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Beyond Regular Languages

Some languages are not regular. Here are three

examples. I hope you can extrapolate the intended

language from the example strings

• ε, 01, 0011, 000111, 00001111, · · ·

• ε, (), [], (()), ([]), [[]], ((())), · · ·

• 123, 12 + 3, 42× 2, (1 + 2)× x, 2× y + 3× z, · · ·

Let’s prove that the first one is not regular. The proof

is by contradiction: we’ll assume that the language is

regular and derive a contradiction.
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Proof that L = {ε, 01, 0011, 000111, 00001111, · · · } is not

regular

(0) Assume that L is regular.

(1) From (0), there is a DFR that describes the language.

(2) Let A be any such DFR. L(A) = L

(3) For each i ∈ N, let f(i) be the state that A is in after

processing the string “0”i.

I.e., f (0) = q0 and, for i > 0, {f(i)} = δ(f (i− 1),‘0’).

(4) Let n be the number of states in A.

(5) Consider the sequence f(0), f(1), ..., f(n) of length

n + 1.

(6) Since there are only n states in A, at least one state

in this sequence must be repeated.

(7) So we can let i and k be such that i �= k and

f (i) = f(k).

(8) Since “0”iˆ“1”i is in L, “1”i ∈ L(f(i)).

(9) “1”i ∈ L(f(k)) (By (7) and (8))

(10) Consider the string s = “0”kˆ“1”i .

(11) After processing the k 0s, A will be in state f(k).

(12) From (11) and (9), A will accept “0”kˆ“1”i.

(13) But since k �= i, s is not in L.

(14) By (12) and (13), the language of A is not L.

(15) We have a contradiction between (2) and (14)

Conclusion. Assumption 0 must be untrue.

End of Proof.

Type set March 14, 2018 2



Advanced Computing Concepts Slide Set 1-4. Grammars and Parsing. Theodore Norvell

Grammars and Parsing

A formal language is simply a set of sequences.

Usually we restrict ourselves to possibly infinite sets of

finite sequences over a finite set S.

Formal language theory considers finite descriptions of

languages.

We are particularly interested in description methods

that are

• easy to understand and use

• lead to algorithms for analyzing sequences

• suitable for automated processing

Finite recognizers meet these criteria, but there are many

important languages that can not be described by finite

recognizers because they (the languages) require more

than a fixed amount of memory.
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Grammars

Unrestricted Grammars

Game 1

We have an unlimited supply of puzzle pieces of each of

3 shapes

1 +

+ 1 + =

1

The puzzle starts with a sequence of pieces:

1 1 + 1 1 =

The idea is to close all the circles.

In each step we can add one pieces from our infinite

supply.

We can stretch the lines vertically, but can not alter the

sequence of symbols along their top or bottom and can

not rotate the pieces.

We also can not cross lines.

In this case we get
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1 1 + 1 1

1 +

+ 1

1 +

+

1

=

+

=

1

1

11

Now looking at the sequence of closed circles (with no

lines at the bottom), we get:

1111
Thus our puzzle pieces describe an algorithm for

computing addition in tally notation.

In general, a set of puzzle pieces defines a function from

finite sequences to finite sequences.

Proposition 1 Any function from strings to strings that can be

computed by an algorithm can be turned into a game like this.

We call such a function a “computable function”.

Challenge: find a game that will add numbers presented

in binary notation. E.g. with input

1100 + 111 =

the output will be 10011.
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Challenge: How can you multiply tally notation? An input

of 111× 11 = should result in an output of 111111.

Game 2

For this game we start always start with an symbol S and

the 7 piece kinds are

( S

S

)

)

(

[ S

S

]

S []

We can make a tree
S

[

S

S

](

S

S

)
S

[ ]( )

The final sequence is [()] other sequences we can reach

are [[[(([]))]]] and the empty sequence.

This game defines an infinite set of finite sequences over

the alphabet {‘(’, ‘)’, ‘[’, ‘]’}.

Type set March 14, 2018 6



Advanced Computing Concepts Slide Set 1-4. Grammars and Parsing. Theodore Norvell

Proposition 2 Any language that can be generated by an

algorithm can be defined by a game like this. (I.e., the

algorithm produces a possibly infinite list containing each

member of the language.)

We call set a language a “recursively enumerable

language”.
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Handier Notation

To save space, we will use a more compact notation.

Game 1 again

We define a finite set of “terminal symbols” S = {1}.

We define a finite set of “nonterminal symbols” (a.k.a.

“variables”) V = {‘+’,‘=’}.

We define a finite set of “production rules”

P = { ‘ + ’ = −→ ε,
‘ + ’ ‘1’ −→ ‘1’ ‘ + ’ }

The above comprise a “grammar”.

We play the game by starting with a sequence, say

11+111=, and replacing any occurrence of the right hand

side of a production with its left hand side, stopping when

only terminals remain

11+111=

=⇒ 111+11=

=⇒ 1111+1=

=⇒ 11111+=

=⇒ 11111
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Game 2 again

We define a finite set of “terminal symbols” or “alphabet

symbols” S = {‘(’,‘)’,‘[’,‘]’}.

We define a finite set of “nonterminal symbols”

V = {Start}.

We define a finite set of “productions”

P = { Start −→ ε,
Start −→ ‘(’ Start ‘)’,
Start −→ ‘[’ Start ‘]’ }

We define a starting nonterminal Start.

We play the game by starting with the starting

nonterminal and replacing left hand sides with right

hand sides until we only have terminals

Start

=⇒ (Start)

=⇒ ((Start))

=⇒ (([Start]))

=⇒ (([]))

Unlike game 1, we are faced with some choices.
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Formalizing a bit

A bit of notation

Letter Conventions

• α, β, γ, δ, η, and κ are strings of symbols (terminal or

nonterminal).

• s, t, u, v, w, are strings of terminals.

• a, b, c, d, and e are terminals.

• A,B,C,D,E are nonterminals

• X, Y , Z are symbols (terminal or nonterminal)

Abbreviations

• Strings of length 1 may be written as symbols. E.g. a
instead of [a].

• Carets (catenations) may be left out. E.g. st instead

of sˆt.

• These abbreviations may be combined: for example

αBc means αˆ[B]ˆ[c]
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Grammars

Definition: A “grammar” is a tuple G = (V, S, P,Astart) or

G = (V, S, P ) where

• V is a finite set of nonterminal symbols

• S is a finite set of terminal symbols (disjoint from V )

• P is a finite set of production rules of the form α −→ β
with at least one nonterminal in α.

• Astart is a member of V called the “start symbol”

Production

If we have a production rule α −→ β, we say a string γαδ
“can produce” a string γβδ.

Definition: More formally, given a grammar

G = (V, S, P,Astart) we say that η “can produce” κ
exactly if there exist

• a production rule (α −→ β) ∈ P

• and strings γ and δ such that η = γαδ and κ = γβδ.

We write η =⇒ κ to mean η “can produce” κ
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Derivation

Definition: If there exists a finite sequence of strings α0,
α1, ... , αn such that

α = α0 =⇒ α1 =⇒ ... =⇒ αn = β

then we say that α “derives” β. In notation:

α
∗
=⇒ β

And we say that α, α1, ... , β is a “derivation”.

The function defined by a grammar

Each grammar defines a relation rG ∈ (V ∪ S)∗ ↔ S∗ so

that if α
∗
=⇒ β ∈ S∗ then

(α, β) ∈ graph(rG)

For some grammars, this relation is a function.

Every computable function is expressible as a grammar.

The language generated by a grammar

Definition: If a grammar G has a start symbol Astart,
then the language generated by the grammar is

L(G) = {w | Astart
∗
=⇒ w}

Note that L(G) ⊆ S∗ . For example for G from game 1

we have

L(G) = {ε, (), [], (()), ([]), [()], [[]], . . .}

Every language that can be recognized by some sort of

digital computer can be expressed by a grammar.
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Context Free Grammars

Game 1 and Game 2 have a significant difference.

Game 2 only produces trees. This is because each

puzzle piece has only one semicircle in its top row.

We call such a grammar “context free”.

Definitions

Definition: A “context free grammar” is a grammar

where each production rule is of the form

A −→ β

for some A ∈ V .

Definition: A “context free language” is a language

generated by some context free grammar.

Significance

Con: There are recursively enumerable languages that

are not context free.

Pro: context free grammars

• Are easy to use and understand

• Given a grammar, there is always an algorithm to

determine whether or not a string is in the language

generated by the grammar: O(N 3)
∗ For common special cases there are fast algorithms: O(N).

• Many useful and important languages are context

free.

∗ Example: The language of syntactically correct

Java classes
Type set March 14, 2018 13
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∗ Example: Well-formed XML documents.

∗ Example: Valid XML documents.

∗ Example: Correct usages of many communication

protocols.

• For languages that are not context free, we can often

start by defining a context free language and then

restricting that language

∗ Example: The language of compile-time error free

Java classes.
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Examples Of Context Free Grammars

Programming language examples

Typical Compiler phase structure

source file → Preprocess → Lexical Analysis

↓
object file ← Final Output Syntax Analysis

↑ ↓
Optimization Semantic Analysis

↑ ↓
Code Generation ← Optimization

Phase goals

• Preprocessing: character sequence to character

sequence.

• Lexical analysis: character sequence to sequence of

tokens

• Syntax analysis (aka parsing): token sequence to

“abstract syntax tree”

• Semantic analysis: build symbol table and find errors

• Code Generation: Select instruction sequences

• Optimization: various time and space improvements

• Final output: output machine code (or assembly code).

Role of grammars: Grammars are used in

• Preprocessing to parse macro definitions & uses,

includes, conditional compilation etc.
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• Lexical analysis uses a grammar to describe how to

break a sequence of characters into a sequence of

“tokens”

∗ spaces, newlines, and comments not output

∗ Example input to lexical analysis:

// Read two numbers

var i : float read i

var j : float read j

// find the average, and print it

var k k := (i+j)/2 print k

∗ Example Output:

var, (id, i), :, float, ..., /, (num, 2), print (id k)

• Syntax Analysis (parsing) determines if the se-

quence of tokens is syntactically in the language and

(typically) builds a tree representation.

• Code generation Grammars are sometimes used to

describe sequences of operations that correspond to

machine instructions.
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A handy abbreviation:

We abbreviate multiple productions with the same

left-hand side by writing

A −→ α | β

to mean that both A −→ α and A −→ β are productions.

Floating point numbers in C/C++ (lexical phase).

Terminals are characters written in typewriter font.

floatNum −→ fract optExp optFloatSufix

| digits exp optFloatSufix

fract −→ optDigits . digits | digits .

digits −→ digit | digit digits

exp −→ E sign digits

exp −→ e sign digits

optExp −→ ε | exp

optDigits −→ ε | digits

optFloatSufix −→ ε | f | l | F | L

digit −→ 0 | 1 | 2 | 3 | 4

| 5 | 6 | 7 | 8 | 9

sign −→ ε | + | −

Example strings in the language:

123.456 .456E+789 123E798
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Not in the language:

123$456

.456.789

123

123E0.1

An example derivation:

floatNum =⇒ fract optExp optFloatSufix

=⇒ fract optExp

=⇒ fract

=⇒ optDigits . digits

=⇒ digits . digits

=⇒ digit . digits

=⇒ digit . digit digits

=⇒ digit . digit digit

=⇒ 1 . digit digit

=⇒ 1 . 2 digit

=⇒ 1 . 2 3
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A simple programming language (lexical level, partial

grammar)

Terminals are all ASCII characters

token −→ spaces tk

tk −→ keyword | id | num | punc | op | EOF

spaces −→ ε | space spaces

space −→ spacechar | newlinechar

| tabchar | comment

comment −→ / / nonnewlines newlinechar

nonnewlines −→ ε | nonnewline nonnewlines

nonnewline −→ alpha | digit | ( | ) | + | − | / | ∗ | · · ·

keyword −→ p r i n t

| r e a d

| ...

id −→ alpha alphasOrDigits

num −→ digit | digit num

alphasOrDigits −→ ε | alphaOrDigit alphasOrDigits

alphaOrDigit −→ alpha | digit

alpha −→ a | b | · · · | z | A | B | · · · | Z

digit −→ 0 | 1 | · · · | 9

punc −→ ( | )

op −→ + | − | / | ∗ | = | ! =
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Expressions for a programming language (syntactic

level)

Terminals are (, ), num, id, +, -, /, *, =, and !=. Starting

nonterminal is exp

exp −→ num

| id

| exp bop exp

| uop exp

| ( exp )

bop −→ + | - | * | / | = | !=

uop −→ + | -

Example string in the language:

( num + num ) / - id = id / num / id

Not in the language:

( num + ( id * id ) ) )

- num ( num * * id )
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A simple programming language (syntactic level)

Terminals are as in the previous example plus print,

read, var, if, else, end, while, int, float, bool, eof

prog −→ stat eof

stat −→ print exp

| read v

| var v : type

| v := exp

| if exp stat else stat end

| while exp stat end

| stat stat

v −→ id

type −→ int | float | bool

exp −→ as in previous example

Strings in the language:

var id : int read id print num + id eof

if num id := num else id := id end eof

Note that there may still be “semantic” errors.

Strings not in the language:

var id read num print num + eof

if num id := num else id := id eof

Internet applications
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HTML tags (as Netscape and IE recognize them)

startTag −→ < elementName attributes >

elementName −→ letter moreElementName

letter −→ a | b | ... | z | A | B | ... | Z

moreElementName −→ nonSpace moreElementName | ε

nonSpace −→ letter | ...

attributes −→ etc.

Attributes is a bit complex, so let’s leave it for now

The http URI

http_URL −→ h t t p : / / host optPort optAbsPath

optPort −→ ε | : port

optAbsPath −→ ε | absPath | absPath ? query
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Hosts and ports are defined by

host −→ hostName | iPv4address

hostName −→ labels optDot

labels −→ dlabel . labels | tlabel

dlabel −→ alphaNum | alphaNum labelChars alphaNum

tlabel −→ alpha | alpha labelChars alphaNum

labelChars −→ alphaNum | -

optDot −→ ε | .

iPv4address −→ digits . digits . digits . digits

digits −→ num | num digits

alphaNum −→ alpha | num

alpha −→ a | b | ... | z | A | B | ... | Z

num −→ 0 | 1 | ... | 9

port −→ ε | num port

Paths

absPath −→ / segments

segments −→ segment | segment / segments

segment −→ etc

query −→ etc

I won’t go into all the details, but just comment that a

segment is a sequence of almost any characters, as is a

query.

Protocols

In this case the tokens are requests and replies.

Requests go from client to server and replies from server

to client.
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This is a greatly simplified FTP (File Transfer Protocol).

session −→ greetingRequest greetingReply moreSesn

moreSesn −→ quitRequest quitReply

| sendFileRequest sendFileReply moreSesn

| sendFileRequest errorReply moreSesn

| getFileRequest getFileReply moreSesn

| getFileRequest errorReply moreSesn

The syntax of the various requests and replies can also

be specified in terms of sequences of bytes, just as

tokens are specified in compilers.

Aside: Relation to NDFRs.

Define an NDR just as we defined an NDFR, except

without the restriction that the number of states be finite.

Given a CFG G = (V, S, P,Astart) we can define an NDR

as follows.

• Alphabet is S

• States are all strings α where and α ∈ (V ∪ S)∗.

• Initial state is Astart

• The only final state is ε.

• There are two kinds of transitions

∗ All (aβ, a, β) where s ∈ A, β ∈ (V ∪ S)∗ and

∗ all (αAβ, ε, αγβ) where A ∈ V , α, β, γ ∈ (V ∪ S)∗,
and A→ γ ∈ P .
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Now the language described by the grammar and the

recognizer are the same.

Note that we can not easily adapt our recognition

algorithm for NDFRs because the ε-closure of a state

may be infinite in size.
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Recognition and Parsing

Given a grammar G, the recognition problem is this

Input: A string w of terminal symbols.

Output: Whether or not w is in L(G)

Parsing problems are similar, but the output also includes

a useful data structure when w ∈ L(G).

For example:

• In a compiler: we might output an abstract syntax tree.

• In a calculator: we might output the numerical value of

an expression.

• We might output machine code or a reverse polish

notation (RPN) representation of the input.
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Derivation Trees and Left-most

Derivations

Definition: A left-most derivation is one where, at each

step, the left-most nonterminal is replaced. We write

α =⇒lm β

More formally, have α =⇒lm β iff there are A, s, γ, and

δ such that α = sAγ and A −→ δ and β = sδγ. (Recall

that s ∈ S∗).

We write α
∗
=⇒lm β to indicate that there is a derivation

of β from α in 0 or more left-most production steps.

Given a grammar G and a string s in L(G) we can

consider a tree that illustrates the proof that the tree

is in the language. Any derivation corresponds to a

“derivation tree”.

Example

exp −→ num | id | exp bop exp | uop exp | ( exp )

bop −→ + | - | / | * | = | !=

uop −→ + | -
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Consider the input 2*i+j, which as a string of terminals is:

num * id + id. One derivation is

exp =⇒ exp bop exp

=⇒ exp bop id

=⇒ exp bop exp bop id

=⇒ exp bop id bop id

=⇒ exp ∗ id bop id

=⇒ num ∗ id bop id

=⇒ num ∗ id + id

from which we can build the following “derivation tree”.

exp

exp
expbop

exp expbop

idnum id
* +

We can build a “left-most derivation” by traversing the tree

depth-first and left to right, expanding the nonterminal
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that we encounter

exp =⇒lm exp bop exp

=⇒lm exp bop exp bop exp

=⇒lm num bop exp bop exp

=⇒lm num * exp bop exp

=⇒lm num * id bop exp

=⇒lm num * id + exp

=⇒lm num * id + exp

But with the same grammar and the same string, we can

build a different tree.
exp

exp

exp
bop

exp
exp

bop

idnum id* +

The corresponding left-most derivation

exp =⇒lm exp bop exp

=⇒lm num bop exp

=⇒lm num * exp

=⇒lm num * exp bop exp

=⇒lm num * id bop exp

=⇒lm num * id + exp

=⇒lm num * id + id

Ambiguity

Definition: We say that a grammar is ambiguous iff for

some string there exist two or more derivation trees.
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Equivalently: a grammar is ambiguous iff some string

has two or more left-most derivations.

For many applications, we should avoid ambiguous

grammars since

• other matters (semantics) are generally described in

terms of the grammar and we don’t want ambiguous

semantics.

• it is hard to build an efficient parser for ambiguous

grammars.

For other applications: e.g. natural language

understanding, ambiguity is useful.

Consider

• “I saw a bird with a telescope”

• “I saw a man with a hat”

• “I saw a man with a telescope”

All 3 sentences fit the pattern

pronoun verb det noun prep det noun

but, in the first, the prepositional phrase attaches to the

verb, whereas in the second the prepositional phrase

attaches to the object. This means we want multiple

derivation trees for the same sequence of word forms.
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Ambiguity and expression grammars

Here is a grammar for expressions Exp0

E −→ n | ( E ) | E + E | E - E | E * E | E / E
This grammar is highly ambiguous.

How many derivation trees are there for n - n / n / n - n ?

14? In a sense only 1 reflects the correct precedence

and associativity of the operators.

To ‘enforce’ ‘correct’ parsing of expressions we can write

a new grammar, Exp1

E −→ T | E + T | E - T

T −→ F | T * F | T / F

F −→ n | ( E )

This grammar is unambiguous.
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Left-recursion

A nonterminal A is said to be left-recursive if there is a

derivation

A
∗
=⇒ Aβ

with at least one step (for some β).

A grammar is left-recursive iff it has at least one left-

recursive nonterminal.

Clearly both Exp0 and Exp1 are left recursive. Here is an

unambiguous grammar for the same language as Exp0

and Exp1 that is not left-recursive. Exp2:

E −→ T E1

E1 −→ + T E1 | - T E1 | ε

T −→ F T1

T1 −→ * F T1 | / F T1 | ε

F −→ n | ( E )
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Top-Down predictive parsing and

recognition.

A top-down predictive parser works by trying to build the

derivation tree from the top down.

For example here is a derivation tree that is partially built.

Consumed
input

Input yet to be
consumed

if id = id    id := id   else   print id   end

stat

exp stat statif

expexp bop

else

id =

The leaves of the tree are if id = exp stat else stat

This tree is a proof that

stat
∗
=⇒ if id = exp stat else stat
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Conceptual view

The idea is to walk the derivation tree in a depth-first

manner, while (conceptually) building the tree and

consuming the input. Circled nodes are not yet visited.

The left to right sequence of circled nodes is called the

prediction.
S

)[ ](
Remaining

Input:

Tree:
S

S

( )

)[ ](
Remaining

Input:

Tree:

S

S

( )

)[ ]
Remaining

Input:

Tree:
S

S

( )[ ]

S

)[ ]
Remaining

Input:

Tree:

S

S

( )[ ]

S

)]
Remaining

Input:

Tree:
S

S

( )[ ]

S

)]
Remaining

Input:

Tree:

S

S

( )[ ]

S

)
Remaining

Input:

Tree:
S

S

( )[ ]

S

Remaining
Input:

Tree:

(a) Initial State (b) After applying

(c) After consuming ( (d) After applying

(e) After consuming [ (f) After applying

(g) After consuming ] (h) After consuming )

)(SS →

][SS →

ε→S
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Augmenting the grammar

It will simplify things later if we augment the grammar

with

• a new terminal, $, called a sentinel.

• a new starting nonterminal A′start and

• a new production rule A′start −→ Astart $, where Astart
was the original starting nonterminal.

We will also add a $ to the end of each input string.

(Typically $ represents the end of the file.)

States, steps, and stops

We will process one terminal at a time.

States

A top-down predictive parser’s state consists of

• the input processed so far s

• the current prediction α and

• the remaining input sequence, t

Let’s write this as

s�α, t

(Note: we don’t represent the partially built tree, but only

the sequence of unvisited nodes α).

As a loop invariant, we’ll have that

A′start
∗
=⇒lm sα

and that st = w$ where w is the original input.
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Inv: A′start
∗
=⇒lm sα and st = w$ for state s�α, t.

As an initial state, we’ll start with

ε�A
′
start, w$

where w is the input string.

Steps

We use two rules to step from one state to another

• Shift: (Read one terminal from the input)

s�aβ, au � sa�β, u

• Produce: (Expand the leftmost nonterminal)

s�Aβ, t � s�γβ, t

where A −→ γ is a production rule.

Note that the initial state implies the invariant and that

each step preserves the invariant.

Theorem: Astart
∗
=⇒ w iff there is a finite sequence of

steps that goes

ε�A
′
start, w$ � ... � w$�ε, ε

Proof outline: Suppose Astart
∗
=⇒ w, then we can use

a derivation sequence to construct a sequence of steps.

Details left as an exercise.

Suppose there is a sequence of steps

ε�A
′
start, w$ � ... � w$�ε, ε

Since the invariant is true of the first state and each step

preserves the invariant, the invariant will be true of the

final state, meaning A′start
∗
=⇒lm w$ and so Astart

∗
=⇒lm w.
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Stopping

Inv: A′start
∗
=⇒lm sα and st = w$ for state s�α, t.

Since st = w$ and w contains no $, (t = ε) =
(s contains a $)

Since A′start
∗
=⇒lm sα and any string derived from A′start

has one $ at its end, (α = ε) = (s contains a $).

Putting these together (α = ε) = (t = ε). So we don’t

need to worry about states of the form s�ε, t, where

t �= ε, nor about states of the form s�α, ε. where α �= ε.

There are three ways to stop recognition:

• Successful stop: We stop when the state is s�ε, ε. In

this case (from the invariant) A′start
∗
=⇒lm s and that

s = w$. Thus A′start
∗
=⇒lm w$. Thus Astart

∗
=⇒lm w.

• Error stop 0: We also stop when the predicted input

does not match the actual input, i.e. the state is

s�aβ, bu where a �= b.

• Error stop 1: We also stop when the state is s�Aβ, t
and there is no appropriate production rule.

If we come to a “Successful stop” then

• the input was in the language: Astart
∗
=⇒ w

If we come to an “Error stop” then either

• the input was not in the language,

• or we made a bad choice in a ‘produce’ step.

Later we’ll see how to avoid bad choices.
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Example

Here is a trace of the algorithm for grammar Exp2

(augmented) and an input of n * n

s�α, t Action

ε�E
′, n * n $ Produce E′ −→ E$

� ε�E $, n * n $ Produce E −→ T E1
� ε�T E1 $, n * n $ Produce T −→ F T1
� ε�F T 1 E1 $, n * n $ Produce F −→ n

� ε�n T 1 E1 $, n * n $ Shift

� n�T1 E1 $, * n $ Produce T1 −→ * F T1
� n�* F T 1 E1 $, * n $ Shift

� n * � F T1 E1 $, n $ Produce F −→ n

� n * �n T1 E1 $, n $ Shift

� n * n �T1 E1 $, $ Produce T1 −→ ε
� n * n �E1 $, $ Produce E1 −→ ε
� n * n �$, $ Shift

� n * n $�ε, ε Success

So the string is in the language.

Note how the sequence of produce steps corresponds to

the left-most derivation.
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In a more algorithmic form

Algorithm: Top down predictive parsing

Input: A string w not containing a $.

Output: ‘success’ or ‘error’. If the output is ‘success’ then

w ∈ L(G). If the output is ‘error’, then either w /∈ L(G) or

a bad choice was made.

var t := w$ // the remaining input.

var s := ε // the consumed input, not really needed.

var α := A′start // the predicted input.

invariant A′start
∗
=⇒lm sα and st = w$

while α �= ε do

if α(0) ∈ S then

if α(0) = t(0) then (
// Shift step

s := s t(0) t := tail(t) α := tail(α) )
else /* α(0) �= t(0) */ error

else /* α(0) ∈ V */ (
try to pick a suitable production rule α(0)→ γ
if a suitable production rule exists

// Produce step

α := γ tail(α)
else /* no suitable production rule exists */

error ) )

/* Since α = ε, t = ε and Astart
∗
=⇒lm w.*/ success
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(tail(t) is the string [t(1), t(2), ..., t(‖t‖ − 1)]. error means

stop with output ‘error’. success means stop with output

‘success’.)

Assuming the grammar is not left-recursive, the top-down

predictive parsing algorithm must terminate and is Θ(N)
time, where N is the length of the input.

To be done: We still haven’t said how to pick a suitable

production rule when a nonterminal comes to the top of

the α stack.

LL(1) Grammars

Definition: An augmented grammar is called an ‘LL(1)

grammar’ when the suitable production rule can always

be chosen on the basis of the next input item t(0) and the

left-most nonterminal α(0).

Left-recursive grammars can never be LL(1). (Why?)

For each production rule A −→ γ we compute the set of

terminals which t(0) might equal when A −→ γ is chosen

as the production rule in a successful run of the TDPP

algorithm.

This set is called the selector set of the production.
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So let’s consider Exp2 augmented

E′ −→ E$ {n, (} T 1 −→ * F T 1 {*}
E −→ T E1 {n, (} T 1 −→ / F T1 {/}
E1 −→ + T E1 {+} T 1 −→ ε {$, ),+, -}
E1 −→ - T E1 {-} F −→ n {n}
E1 −→ ε {$, )} F −→ ( E ) {(}
T −→ F T1 {n, (}
On the right we have a selector set for each production

rule.

We implement the picking part of the algorithm

/*do pick a suitable production rule α(0)→ γ by*/

if there is a production rule α(0)→ γ
with t(0) in its selector set then

pick that production rule

else

there is no suitable production rule

A grammar is LL(1) iff for each nonterminal A and for

each pair of productions for A, the selectors sets of the

two productions are disjoint.

I.e. a grammar is LL(1) iff, for all A, α, β, such that

A −→ α and A −→ β are distinct productions,(
SelectorSet (A −→ α)

∩ SelectorSet (A −→ β)

)
= ∅
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Computing the selector sets.

Consider the selector set for a production rule A −→ α

Look at E1 −→ + E. It is clear that this production rule

should only be picked if the next terminal is a + sign.

In general if α
∗
=⇒ bβ then b should be in the selector set

of A −→ α.

But there is more to it than that when α
∗
=⇒ ε.

Consider E1 → ε the next item in the input should be

one that could legitimately follow an E1 in a successful

derivation. Only items that could follow E qualify and

these are $ and ).

Suppose A′start
∗
=⇒ βAbγ =⇒ βαbγ

∗
=⇒ βbγ then b

should be in the selector set of A −→ α.

(Note that A′start
∗
=⇒ βA =⇒ βα

∗
=⇒ β is not possible!)

Define functions First and Follow for an augmented

grammar by

• b ∈ First(α) iff α
∗
=⇒ bβ, for some β and

• b ∈ Follow(A) iff A′start
∗
=⇒ βAbγ, for some β and γ.

The selector set for A −→ α is

First(α), when α
∗

�=⇒ ε

and is

First(α) ∪ Follow(A), when α
∗
=⇒ ε
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Recursive Descent Parsing

Recursive descent parsing works on the same principle

as TDPP, but uses the call-return stack rather than an

explicit stack.

Let w be the input and f be a boolean variable to indicate

recognition. Our specification is〈
f ′ =

(
Astart

∗
=⇒ w

)〉

As with TDPP we will use a variable t that is initialized to

wˆ[$] where $ is a sentinel symbol that does not occur in

w.

We create a subroutine for each nonterminal

Roughly speaking the job of subroutine A is to either

• indicate an error by setting f to false

〈¬f ′〉

or

• remove from t a prefix u derived from A〈
f ′ ∧ ∃u · t = uˆt′ ∧

(
A

∗
=⇒ u

)〉

Later we’ll look at how to choose between these

actions and how to choose the string u.
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Recursive Descent parsing of LL(1)

grammars

If the grammar is LL(1) then creating an R.D. parser for it

is a mechanical process.

Example

We can write a recursive descent recognizer for Exp2 as

follows

global var t : (S ∪ {$})∗ ·
global var f : B·

procedure main( w : S∗) is

f := true ;
t := wˆ[$] ; // Where w is the input

E;

expect( $ ) ;

return f

procedure consume is

t := tail(t)

procedure expect( a ) is

if t(0) = a then t := tail(t)
else error

procedure error is

f := false ;
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procedure E is

if t(0) ∈ {‘n’,‘(’} then (
T ;
E1 )

else

error

procedure E1 is

if t(0) = ‘+’ then (
consume ;

T ;

E1 )
else if t(0) = ‘-’ then (

consume ;

T ;

E1 )
else if t(0) /∈ {$,‘)’} then

error

... T and T1 are similar to E and E1 ...

procedure F is

if t(0) = ‘n’ then

consume

else if t(0) = ‘(’ then (
consume ;

E ;
expect( ‘)’ ) )

else error
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Getting results

Often we not only want to recognize the input but also

process the input to create an output in the case where

the input is recognized.

We can do this by augmenting the recursive descent

parser with extra code.

As an example, we will produce numbers.

global var t ∈ (S ∪ {$})∗ ·
global var f : B ·

procedure main is

f := true ;
t := wˆ[$] ; // Where w is the input

var p := E
expect( $ )

return (f, p)

procedure error is

f := false ;
return 0

procedure consume is

t := tail(t)

procedure expect( a ) is

if t(0) = a then t := tail(t)
else f := false
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procedure E is

if t(0) ∈ {‘n’,‘(’} then (

var p := T ·
return E1(p) )

else

return error

procedure E1( p ) is

if t(0) = ‘+’ then (
t := tail(t) ;
var q := T ·
return E1( p + q ) )

else if t(0) = ‘-’ then (
t := tail(t) ;
var q := T ·
return E1( p− q ) )

else if t(0) /∈ {$,‘)’} then

return error

else

return p

... T and T1 are similar to E and E1 ...
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procedure F is

if t(0) = ‘n’ then (
var p:= the value associated with t(0)·
t := tail(t) ;
return p )

else if t(0) = ‘(’ then (
t := tail(t)
var p:= E then (
expect( ‘)’ )

return p )
else

return error
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Consider parsing the sequence: 10-2*3-1 As a string of

terminals we have n-n*n-n.

We have the following call tree which reflects the

derivation tree. Return values are shown after the colon.

Sprime

E : 3

T : 10

F : 10 E1(4) : 3T1(10) : 10

10

- T : 6

E1(10) : 3

-
T : 1

E1(3) : 3F : 2 T1(2) : 6

2 * F : 3 T1(6) : 6

3
1

F : 1 T1(1) : 1

$

10                       -       2     *         3                  -          1                                          $

Parsing  10-2*3-1 with the parameter values and the return values shown.

ε

εε

ε
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Questions to consider:

• Modify the recursive descent parser above to produce

an abstract syntax tree for an expression.

• Modify the recursive descent parser above to produce

RPN.

• How could you alter the top-down predictive recognizer

to compute results rather than to just recognize? Hint:

consider adding “commands” to the productions and

executing the commands when they come to the top

of the stack. See the ‘Command’ pattern in Gamma et

al.

• Modify the grammar Exp2 with added commands so

that it computes the right result (hint use an extra stack

to hold intermediate results).

• Add unary operators to the grammar Exp2 so that you

get a LL(1) grammar. Can you parse 12/− 2 ?
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Formal specification of recursive descent

Consider a procedure A for a nonterminal A.

Some observations

• As a precondition, each procedure can assume that t
is properly terminated with a $. Define

terminated(t) = (‖t‖ > 0 ∧ t(‖t‖ − 1) = $)

• terminated(t′) will be a postcondition

• If f is false, f ′ should also be false.

• Either f ′ is false or the procedure should remove a

prefix from t that derives from A.

∗ Consequently, if there is no prefix of t that derives

from A, then f ′ must be false.

∗ Note that, if f ′ is an error is detected, the procedure

can make any change to t (except removing the

final $). Consider a call to E1 when the input is

[+, ), $]; procedure E1 will remove the + and set f to

false.

• If f is true and there is a prefix of t that could lead

to an overall success then such a u should be picked

and f ′ must not be false.

∗ Example. Consider a call to E1 when the remaining

input is [+,n, $]. Although E1
∗
=⇒ ε, it is important

that the E1 procedure does not simply return. The

production E1 −→ ε can not lead to success when

the next item of input is a +. But the production

E1 −→ +T E1 can.

∗ A prefix u can lead to overall success if for some
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strings of terminals s and v

Astart
∗
=⇒ sAv

∗
=⇒ suv and t = uv$

• In every other case (f is true, there is a prefix that

derives from A, but no choice of prefix can lead

to success), it does not matter whether an error is

reported or not.

∗ This point means that our procedure is allowed to

not fail even when failure is inevitable. Consider

a call to F when the remaining input is [n, (, $].
Although failure of the main procedure is inevitable,

it is not the job of the F routine to detect this error.

∗ A subtler example is a call to E1 when the remaining

input is [n, $]. The implementation above detects

an error. But it would also be acceptable for E1 to

do nothing. The error will eventually be reported

regardless.

So the specification of the procedure for A is

〈terminated(t)〉 ⇒ g0 ∧ g1 ∧ g2 ∧ g3
where

g0 = 〈terminated(t′)〉

g1 = 〈¬f ⇒ ¬f ′〉 = 〈f ′ ⇒ f〉

g2 =
〈
¬f ′ ∨

(
∃u · A

∗
=⇒ u ∧ t = ut′

)〉

g3 =

〈 f ∧
(
∃u, s, v ·Astart

∗
=⇒ sAv

∗
=⇒ suv ∧ t = uv$

)

⇒ f ∧

(
∃u, s, v ·

Astart
∗
=⇒ sAv

∗
=⇒ suv

∧ t = uv$ = ut′

)
〉
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Dealing with non LL(1) grammars

Converting to LL(1)

In many cases we can convert an non-LL(1) grammar to

an LL(1) grammar.

Factoring

When two productions for a nonterminal start the same

way, the nonterminal will not be LL(1).

Example

Stat −→ if Exp then Stat end

Stat −→ if Exp then Stat else Stat end

Stat −→ other

The terminal if will be in the selector sets of the first two

productions.

We can factor out the common left parts to get:

Stat −→ if Exp then Stat MoreIf

Stat −→ other

MoreIf −→ else Stat end

MoreIf −→ end
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Eliminating left recursion

Consider a sequence of one or more items separated by

commas

List −→ List , item

List −→ item

We can replace these rules with equivalent productions

List −→ item List′

List′ −→ , item List′ | ε

In general you can eliminate direct left-recursion by

replacing rules

A −→ Aα0 | Aα1 | β0 | β1
with rules

A −→ β0A
′ | β1A

′

A′ −→ α0A
′ | α1A

′ | ε

There exist methods for eliminating indirect left-recursion,

e.g.:

A −→ Bα | β B −→ Aγ | δ

Recursive Descent or TDPP parsing with

non-LL(1) grammars

Ambiguous else

The above methods will convert many grammars to LL(1)

form.

But not all.

In fact there exist languages for which there exists no

LL(1) grammar.
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Consider if statements in C/C++/Java/Pascal

Stat −→ if ( E ) Stat MoreIf | . . .

MoreIf −→ else Stat | ε

E −→ ...

(This is not LL(1) since else is in Follow(Stat) and hence

in Follow(MoreIf) and hence in the selector sets for both

productions for MoreIf)

You can still use recursive descent or top-down predictive

parsing, in this case, but you have to use a means other

than the selector set to pick the production rule.

For example in the “ambiguous else” example, the parser

should (according to the rules of languages like C) pick

the first production rule for MoreIf when the next terminal

is else.

Syntactic lookahead

Another example comes from the Turing Programming

Language. In Turing, both of these are statements

a(1,2,3) := 10

and

a(1,2,3)

The first is an assignment to an array, while the second

is a call to a procedure. The relevant part of the grammar
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looks like this

Stat −→ LHS := E

Stat −→ Call

Call −→ id OptParamList

LSH → id OptIndexList

We might be able to solve this using left-factoring, but,

for parsing, we likely want a different sort of result from

a LHS versus a Call , so left-factoring is not a good

alternative.

A recursive descent parser could look ahead in the input

stream to see if there is a := after what looks like a LHS.

procedure Stat is

if t(0) = id then

if LookAhead then

LHS ; expect( “:=” ) ; E

else

Call

end if

else ...

procedure LookAhead is

// return true if a prefix of t derives from LHS :=
// otherwise return false

Semantic lookahead

Semantic lookahead uses information beyond the

sequence of tokens.
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E.g., in the C++ language a statement “foo (a) ;” could be

either

• an expression statement —the expression is a call to

function foo— or

• the declaration of a variable named a of type foo.

Which is the correct parse depends on whether foo has

been declared to be a type or not using a typedef, enum,

struct, or class declaration. For example, here it is a

declaration.

{ typedef int foo ; . . . foo (a) ; . . . }

The relevant part of the grammar is

Statement −→ Declaration

Statement −→ Expression ;

The terminal id is in the selector sets of both productions.

When parsing C++, we keep a table of all declared types

and consult the table when a choice needs to be made

procedure Statement() is

...

else if t(0) ∈ {int,float, . . .}
∨ t(0) = id∧ the text of t(0) currently represents a

type then

Declaration

else if t(0) ∈ {id,+,−, . . .} then

Expression ; expect( ‘;’ )

else ...
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Bottom-up, Shift-Reduce Parsing

We don’t need (or use) augmented grammars for this.

State

In this parsing method the state is α∧t where

• α is a stack (top is at right) representing consumed

input and

• t is the remaining input

We initialize the state to ε∧w$, where w is the original

input, where w is the original input and $ is a symbol not

in S

Invariant: αt
∗
=⇒ w$ I.e. there is a derivation from αt to

w$.

Steps

There are two kinds of steps

• Shift steps: α∧au �bu αa∧u

• Reduce steps: βγ∧t �bu βA∧t

where A −→ γ is a production rule

Stops

• State Astart∧$ means success

• If neither a shift nor a reduce can lead to a successful

parse, then an error is declared.
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Example using grammar Exp1

E −→ T | E + T | E - T

T −→ F | T * F | T / F

F −→ n | ( E )

α∧t$ Action

ε∧n - n * n - n $ Shift

�bu n ∧ - n * n - n $ Reduce F −→ n

�bu F ∧ - n * n - n $ Reduce T −→ F
�bu T ∧ - n * n - n $ Reduce E −→ T
�bu E ∧ - n * n - n $ Shift

�bu E - ∧ n * n - n $ Shift

�bu E - n ∧ * n - n $ Reduce F −→ n

�bu E - F ∧ * n - n $ Reduce T −→ F
�bu E - T ∧ * n - n $ Shift

�bu E - T * ∧ n - n $ Shift

�bu E - T * n ∧ - n $ Reduce F −→ n

�bu E - T * F ∧ - n $ Reduce T −→ T * F
�bu E - T ∧ - n $ Reduce E −→ E - T
�bu E ∧ - n $ Shift

�bu E - ∧ n $ Shift

�bu E - n ∧$ Reduce F −→ n

�bu E - F ∧$ Reduce T −→ F
�bu E - T ∧$ Reduce E −→ E - T
�bu E∧$

Notice how this traces out a (right-most) derivation in

reverse.
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LR(1) grammars and Parser Generators

Definition: If you can always pick the correct step on the

basis of

• the current stack, and

• the first terminal in the remaining input

then the grammar is said to be LR(1)

Theorem (Knuth): This decision can be made by running

a deterministic finite state machine on the stack and then

basing the decision on the final state of that machine and

the next terminal.

Theorem (Knuth): LR(1) grammars can be parsed in

O(N) time

Proof idea: Represent the stack of symbols with a stack

of finite machine states (this is a data refinement). Then

only the top state on this stack and the next input symbol

need to be consulted, not the whole stack.

Theorem: All LL(1) grammars are LR(1).

Why: LL(1) parsers must decide the production rule for

A on the basis of the first symbol after the start of A. An

LR(1) parser must decide the production rule for A on

the basis of the first symbol after the end of A. Thus an
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LR(1) parser has at least as much information on which

to base a decision.

Implementing an LR(1) parser without tool support is not

easy for nontrivial grammars.

The “yacc” and “bison” parser generators use shift-

reduce parsing and can handle almost all LR(1)

grammars.

yacc and bison produce parsers written in C.
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Deterministic shift-reduce parsing

Algorithm: Deterministic shift-reduce parsing

Input: a string w

Output: ‘error’ or ‘success’

var t := w$· // where w is the input string

var α := ε· // Note: α behaves as a stack.

while α �= Astart ∨ t �= [$] do (

var q := decide what to do ·
if q = shift then (

α := (α ˆt(0)) ;
t := tail(t) )

else if q = reduce(A→ γ) then

let β be such that α = βγ·
α := βA

else /* q = error */

error )

success

The tricky bit is deciding what to do next: There are three

possibilities

• shift

• reduce( A → γ ) where A → γ is a production and γ
is the top of the stack.

• error
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Extended CFGs (or EBNF)

Terminological aside:

• Context-Free Grammars were invented by Noam

Chomsky in 1957 in the study of natural languages.

• John Backus invented an equivalent formalism for

describing programming languages.

• Peter Naur used Backus’s notation in the description

of Algol-60.

• Thus CFG notation is often called BNF for “Backus-

Naur Form”.

• Extended CFGs are often called Extended BNF

(EBNF).

• Augmented BNF (ABNF) is a standardized form of

EBNF used a lot in internet standards.

Back to Extended CFGs (ECFGs, EBNFs,

ABNFs)

We extend CFG notation with convenience notations.

These do not extend range of languages we can

describe.
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Each production rule now has the form

NonTerminal −→ RegularExpression

where a regular expression is one of the following (where

x and y are smaller regular expressions).

An epsilon: ε

A terminal: a

A nonterminal: A

A parenthesized regular expression: (x)

A repetition regular expression: x∗

A sequence regular expression: x; y

A choice regular expression: x | y

These have the following interpretations:

ε describes the string ε

a describes the string a

A describes all strings s such that A
∗
=⇒ s

(x) describes the same language as x

x∗ describes any string of the form s0ˆs1ˆ...ˆsn−1 where

x describes each si and n ≥ 0

x; y describes any language of the form sˆt where x
describes s and y describes t

x | y describes any language described by either x or y

Note that in x∗, 0 repetitions are allowed.
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For example we can write Exp3 (equivalent to Exp0,

Exp1, Exp2) as

E −→ E; ((‘+’ | ‘-’ | ‘*’ | ‘/’); E)∗ | ‘(’ E ‘)’ | ‘n’

Precedence clarification: Alternation has lower

precedence than juxtaposition, which has lower

precedence than repetition.

Some common abbreviations:

x y abbreviates x; y.

x? abbreviates (x | ε) I.e. an optional x

x+ abbreviates x∗;x I.e. one or more repetitions of x

[a − b], where s and t are members of a sequence,

abbreviates a choice of any of the terminals in the

sequence. For example [0 − 9] is a digit and [a − z] is

any lower-case letter.

Revisiting the C++ Floating Number grammar. We can

now be more concise.

floatNum −→ fract exp? (‘f ’ | ‘l’ | ‘F’ | ‘L’)?

| int exp (‘f ’ | ‘l’ | ‘F’ | ‘L’)?

int −→ [‘0’− ‘9’]+

fract −→ int ‘.’ int | int ‘.’ | ‘.’ int

exp −→ (‘e’ | ‘E’) (‘+’ | ‘−’ | ε) int
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Extended CFG is no more powerful than

CFG

Given an ECFG grammar, we can rewrite its productions

to obtain a CFG for the same language:

Algorithm: Apply the following replacements until the

grammar is a CFG..

A→ (x) replace with A→ x
A→ x∗ replace with A→ A1

A1→ x;A1
A1→ ε

A→ x; y replace with A→ A1 A2
A1→ x
A2→ y

A→ x | y replace with A→ x
A→ y

where A1 and A2 are new nonterminals.
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Recursive Descent Parsing with ECFGs

We can implement repetition with a while command and

choice with an if command.

Consider this augmented grammar for expressions Exp4

E′ −→ E $

E −→ T (‘+’ T | ‘-’ T )∗

T −→ F (‘*’ F | ‘/’ F )∗

F −→ ‘n’ | ‘(’ E ‘)’

The choices implicit in the repetitions can be made on

the basis of the next token since:

• neither + nor - are in the Follow set of E

• neither * nor / are in the Follow set of T
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We can implement E with a subroutine

procedure E is

var p:= T ·
while t(0) ∈ {‘+’,‘-’} do

if t(0) = ‘+’ then (

t:= tail(t) ;
var q := T ·
p:= p + q )

else (

t := tail(t) ;
var q:= T ·
p := p− q )

return p

Note that I didn’t bother to check that t(0) is ‘)’ or $ prior

to returning, since the caller of E will presumably make

that check and can provide a better error message.

Parser Generation: The JavaCC parser generator

accepts ECFG grammars and produces parsers written

in Java. (https://javacc.dev.java.net/)

The ANTLR parser generator is similar.
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Syntax diagrams (or railroad diagrams)

Syntax diagrams are similar to ECFGs except, instead

of using regular expressions, we use NDFRs. These

NDFRs are conventionally drawn with networks of lines

representing the states and boxes representing the

transitions. For example:
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Regular languages

Parsing with LL(1) and LR(1) grammars takes

• O(N) time and (worst case)

• O(N) space. (N is the length of the input)

Regular languages are those that take O(1) space.

We can define regular languages in terms of grammars

one of several equivalent ways

First way

A regular language is one that can be described by an

ECFG grammar with no recursion (direct or indirect)

between the nonterminals

For example the syntax of floating point numbers in C++.

Example:

M −→ $DD?D?(,DDD)∗.DD

D −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Counter-example:

E −→ (n ((+ | - | * | /) n)∗) | ‘(’ E ‘)’

has recursion.
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Second way

A production rule is right linear if it is of the form

A −→ sB

or of the form

A −→ s
(recall that s contains no nonterminal).

A regular language is one that can described by a CFG

containing only right-linear productions.

Example

A −→ $B

B −→ dC

C −→ D | dD

D −→ E | dE

E −→ ,dddE|.dd

Counter-example:

E −→ n | ‘(’ E ‘)’

Recursion of E is not at the very right of the production

rule
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Attribute grammars

Attribute grammars augment terminals and nonterminals

with attributes.

Each production has an boolean expression that must be

satisfied at each node in the derivation tree.
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Recognition by “dynamic program-

ming”

Input: A string w and a grammar G = (V, S, P,Astart) such

that every production is in one of the following forms

A −→ a

A −→ B C

(Exercise. Show that any grammar such that ε /∈ L(G)
can be transformed to an equivalent grammar that

satisfies this constraint.)

Let n be the length of w.

var m : array {0, .., n} × {0, ..n} of P(V )
// Each element of m is a set of nonterminals

for (i, j) ∈ {0, .., n} × {0, ..n} do m(i, j) := ∅

The idea is to put into each element m(i, j) all

nonterminals that describe the substring w[i, .., j] where

i < j.

for i ∈ {0, ..n} do m(i, i + 1) := {A | A −→ w(i) ∈ P}

So far we have succeeded for substrings of length 1.

We can ‘multiply’ two sets of nonterminals U and V
as follows: if B ∈ U and C ∈ V and A −→ BC is a

production then A ∈ U ⊗ V . I.e.

U⊗V = {A,B,C | (A −→ B C) ∈ P ∧B ∈ U ∧ C ∈ V ·A}
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If s and t are strings and U contains all nonterminals B
such that B

∗
=⇒ s and V contains all nonterminals C

such that C
∗
=⇒ t, then U ⊗ V contains all nonterminals

A such that A
∗
=⇒ sˆt.

The rest of the algorithm fills in the table for segments of

increasing length.

for k from 2 to n do

for i ∈ {0, .., n− k} do

let j := i + k·
for 8 ∈ {i + 1, .., j − 1} do

m(i, j) := m(i, j) ∪ (m(i, 8)⊗m(8, j))

Upon completion, the string is in the language iff

Astart ∈ m(0, n).
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