
Advanced Computing Concepts Slide Set 1-5 Theodore Norvell

Turing machines

History:

• 1900 David Hilbert asked: Given an axiomatization of

an area of mathematics (e.g. Hilbert’s axiomatization of

Geometry, or Frege’s axiomatization of natural numbers),

is there a procedure that will determine the truth of any

conjecture?

• Hilbert did not mathematically define the concept of a

procedure.

• 1930 Gödel showed that every “true” sentence in first-

order predicate logic can be proved.

• It remained to develop a procedure of determining

whether the a sentence in first order predicate logic is

true or false.

• 1936 Alan Turing proposed the Turing machine to define

the concept of a procedure.

• His conclusion: There is no procedure that can classify

sentences of

March 20, 2018 1



Advanced Computing Concepts Slide Set 1-5 Theodore Norvell

A Turing machine represents an idealized human computer:

• Performs one kind of computation.

• Never makes a mistake.

• Never runs out of paper, pencils, erasers, or time.

• Finite brain power.

Syntax of a Turing Machine

A Turing Machine is a tuple (S,Q, qstart, qhalt, T )

• S is a finite alphabet set including the blank symbol /b

• Q is a finite state set

• qstart ∈ Q is the start state

• qhalt /∈ Q is the halt pseudostate.

• T is a set of transitions (see below)

Each transition is a tuple (q, a, r, b, d) where q ∈ Q,

a, b ∈ S, r ∈ Q ∪ {qhalt} ,and d ∈ {L,R}.

We require that the Turing machine be deterministic in the

sense that for each (q, a) pair, there is exactly one transition

(q, a, b, r):

∀q ∈ Q · ∀a ∈ S · 1 = |{(r, b, d) | (q, a, r, b, d) ∈ T}|

March 20, 2018 2



Advanced Computing Concepts Slide Set 1-5 Theodore Norvell

Operation of a Turing Machine:

The input and output of a Turing Machine is represented

by a tape, which is a two way infinite sequence of symbols.

Although the tape is considered to be infinite, we will

restrict it to contain only a finite amount of information by

insisting that all but a finite number of cells on the tape be

blank.

We imagine there is a read/write head over the tape. In each

step of execution, one symbol is read and that cell of the

tape is then overwritten with a symbol. The the head moves

either left or right.

A configuration of a Turing machine consists of a state q, a

value of the tape t, and a position of the head k.

Let w be the input string.

var t : Z
tot
→ S := [. . . , /b, /b, /b, ...]

for i← {0, .. ‖w‖} do t(i) := w(i)
var k := 0
var q := qstart
while true do (

let r, b, d | (q, t(k), r, b, d) ∈ T
t(k) := b ;
if r = qhalt break

if d = L then k := k − 1 else k := k + 1 ;
q := r )

output t[k, ...]

March 20, 2018 3



Advanced Computing Concepts Slide Set 1-5 Theodore Norvell

An example: Another parenthesis checker.

In the pictures states are marked with R or L.

All transitions into a state marked R have d = R.

All transitions into a state marked L state have d = L.

The halt pseudostate is H.

R

L

L

start
X

b

b

( no

b

)

X
(

no

yes bH

H

H

Convention: Arrows that leave state alone and

don't change the tape are omitted from the diagram.

E.g.

(

(
R

X

X

omittedstart

Notice that it overwrites its input with X’s two matching

parentheses at a time.

March 20, 2018 4



Advanced Computing Concepts Slide Set 1-5 Theodore Norvell

A Turing machine to convert binary to unary

start

R
1

0
R

X
X

R
1 b

L
b

b

0
b

RX
X1A

b

b

R

L
A

1

R
b

1

b

b

H

Initial Config

...bbb110Xbbbbb...

start

...bbbbbbb111111bbb...

X
b

HFinal config

1 in input: Change to 0

and add 1 to output

0 in input:

Double the

output.

Convert Binary to Unary.

March 20, 2018 5



Advanced Computing Concepts Slide Set 1-5 Theodore Norvell

Halting

Note a Turing machine may not halt on some inputs. Thus

a Turing machine does not define a function from strings to

strings, but rather a partial function i.e. a function except

that for some members of the domain there is no result.

Problem 0 (The halting problem): Given a Turing machine

and an input tape, determine whether the TM will halt.

Problem 1: Given a Turing machine determine, if it will

halt for all initial configurations.

Problem 2: (Busy Beaver): Given a number N, find the

maximum number of 1’s that can be output by a TM with

N states, and an alphabet of {1,  b} when started on an all

blank tape. (NB the TM must halt for this input tape.)

Equivalent formalisms.

• Idealized Programming languages

∗ Suppose C’s or Java’s “new” command never failed to

find new memory.

∗ Suppose that in Haskell, LISP, or ML we can construct

arbitrarily long lists.

• Idealized computers.

∗ a computer in which a memory of finite words is

indexed by the natural numbers (rather than a finite

subset thereof)

∗ a computer with a finite number of words (at least

2), but where every memory word contains an integer

(rather than a 32-bit integer). (Register Machine)

March 20, 2018 6



Advanced Computing Concepts Slide Set 1-5 Theodore Norvell

∗ Infinite number of integers (Random Access Machine)

∗ a PC with an endless supply of rewritable disks and an

operator to change them on request.

• Lambda Calculus (Church 1936). A simple Functional

Programming Language.

• Partial recursive functions (Kleene 1936): Functions

formed from addition, subtraction and a minimum

operator:

min
x
f (x) = the minimum natural x such that f (x) = 0.

• Grammars in which more than one symbol may appear

on Left-hand-side

L → B

B → 0ABC2 | ε

AC → 1

A1 → 1A

• 2PDAs — Like PDA’s but with 2 stacks.

• The human computer.

Any limitation that applies to an idealized programming

language or a idealized computer will also apply to real

programming languages and real computers.

Effective computability

Defn: An “effectively computable function” is a function

which can be evaluated by an algorithm.

N.B. This is not a mathematical definition as “algorithm” is

not a well defined concept.

March 20, 2018 7



Advanced Computing Concepts Slide Set 1-5 Theodore Norvell

The Church-Turing Thesis: Any “effectively computable

function” can be computed by some (always halting) Turing

machine.

Note: This is not a mathematical theorem. It is a generally

held belief.

Note: The converse is obviously true. Any function

computed by a TM is effectively computable.

Corollary: Any effectively computable function can be

computed by any of the above equivalent formalisms.

Why Turing Machines make good models

Why would we be interested in Turing Machines and similar

models if all “real” devices have a finite amount of memory?

• We can not investigate time and space complexity unless

we can consider inputs of unbounded size.

• Limitations on finite memory models can be overcome by

enlarging the memory. Limitations on infinite memory

models are fundamental.

• Running out of space in software is unpredictable. The

model of memory used by (good) software developers is

that of an unknown amount of memory. If an algorithm

won’t work on a machine with unlimited memory, it

certainly won’t work given an unknown amount of

memory.

Limits on the power of Turing machines

Are there well-defined mathematical problems that no

computer can solve?

March 20, 2018 8



Advanced Computing Concepts Slide Set 1-5 Theodore Norvell

We will show that the Halting Problem can not be solved by

any algorithmic method

Claim: For any TM, there exists an equivalent TM with an

alphabet of {0, 1,  b}.

• We can encode the original alphabet with a binary code.

We can encode any such TM as a sequence of symbols from

a small alphabet.

E.g. use binary encoding of the states.

Define

enc(T ) = the encoding of T
Theorem the halting problem can not be solved by any

Turing Machine.

Proof (By contradiction)

Assume to the contrary that we have a TM H that solves the

halting problem. Specifically:

• If we start H in a configuration

...  b  b  b 〈encoding of a T〉X 〈I〉  b  b  b...

then

∗ if T halts for input I, H halts in a configuration:

...  b  b  b 〈Yes〉  b  b  b...

and

∗ if T does not halt for input I, H halts in a configuration

...  b  b  b 〈No〉  b  b  b...

March 20, 2018 9



Advanced Computing Concepts Slide Set 1-5 Theodore Norvell

Thus H computes a function

H(enc(T ), I) = if T halts on I

then output yes and halt

else output no and halt

We can build another TM D using H as a subroutine as

follows

D(I) = if H(I, I) then loop else halt

I.e. D loops forever if H returns yes.

Turing machine H

H H

start

yes
no

H

Turing machine H

H

start

yes
no

D

Duplicate the input

R Note machine will  move right

forever from this state.

(Remember omitted arrows)

March 20, 2018 10



Advanced Computing Concepts Slide Set 1-5 Theodore Norvell

Consider running D with an input of enc(D). This

computation must halt or not. Furthermore H can tell us

which.

• Suppose D(enc(D)) halts.

D(enc(D))
= if H(enc(D), enc(D)) then loop else halt

= Supposition

if yes then loop else halt

= loop

Thus D(enc(D)) does not halt. Contradiction.

• Suppose now that D(enc(D)) does not halt

D(encD)
= if H(enc(D), enc(D)) then loop else halt

= Supposition

if no then loop else halt

= halt

Thus D(enc(D)) does halt. Contradiction

Either way there is a contradiction. The culprit must be out

assumption that H exists.

QED

Note: For many TMs and specific inputs, we can determine

if they halt.

Corollary: Assuming the C-T thesis, there are problems no

computer (and no human) can solve.

Other unsolvable problems.

• Given an arbitrary mathematical conjecture, does it have

March 20, 2018 11



Advanced Computing Concepts Slide Set 1-5 Theodore Norvell

a proof?

• Given an arbitrary polynomial such as

a3b2c4 + a2b3 = 0

Do there exists integer solutions?

That is unsolvable was proved in 1970: 70 years after

Hilbert asked for a solution.

(Proof by showing that such equations can encode Turing

Machines.)

The first says there is no universal theorem proving method.

The second shows there are implications for everyday

mathematics.

A universal TM (Optional)

Claim: There exists a TM (called U) with the following

properties:

• Suppose we have a TM T (with alphabet {0, 1,  b}) that

only uses the left half of the tape.

• Suppose we have an input sequence I for T

• We will start it in a configuration

...  b  b  b 〈encoding of a T〉X 〈input I〉  b  b  b...

• If T halts on input I with output O then U halts in a

configuration

...  b  b  b 〈encoding of a T〉X 〈output O〉  b  b  b...

• If T does not halt on input I then U does not halt.

Minsky (1967) describes a U with 23 states.

March 20, 2018 12



Advanced Computing Concepts Slide Set 1-5 Theodore Norvell

U is a stored-program computer: It is capable of executing

any algorithm. T is the software representing the algorithm.

We only need one TM: U

We only need one kind of computing machine. The rest we

can do with software.

March 20, 2018 13



Advanced Computing Concepts Slide Set 1-5 Theodore Norvell

The Chomsky Hierarchy (+ Others)

Type 3: (Finite space) Regular languages: Recognized by

• Deterministic Finite Recognizers (DFRs)

• Nondeterministic Finite Recognizers (NDFRs)

• Regular expressions & REFRs

Type ?: (Stack memory) LR(k)

• Deterministic Push-Down Automata

Type 2: (Stack memory) Context Free Languages

• Nondeteriministic Push-Down Automata

• Context-Free Grammars

Type 1 (Linear space) Context Sensitive Languages

• Turing Machines with memory O(N) of input size N .

Type ? (Infinite space) Recursive Languages

• Turing Machines (etc) that halt

Type 0 (Infinite space.) Recursively Enumerable Languages

• Turing Machines, Unrestricted grammars, Idealized

Computers and Languages, Lambda Calculus, General

Recursive Functions

March 20, 2018 14


