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Efficiency of algorithms

Introduction

Consider the problem of finding the prime factors of

267 − 1 = 147 573 952 589 676 412 927

This took F. N. Cole three years of Sunday afternoons at

the start of the 20thcentury to factor this number.

Now consider multiplying

761 838 257 287× 193 707 721

This would take you a few minutes on a Sunday

afternoon.

Today most e-commerce on the internet is protected

by the fact that it takes years to factor large numbers

(numbers with more than 300 decimal digits) even with

very fast computers.

Why? The security of the RSA cryptography system is

based on the fact that factoring is currently a difficult

problem.

Question: Is factoring inherently difficult.

I.e., is the problem of factoring large numbers

currently difficult because there is no fast algorithm

for it, or because, although there is a fast algorithm

for it, we haven’t found a fast algorithm for it yet?

We don’t currently know.

Type set March 30, 2014 1



Advanced Computing Concepts Slide Set 2-0. Efficiency of Algorithms (C) Theodore Norvell

No one knows the answer to this question.

If a fast algorithm is found, it could immediately destroy

the security of e-commerce.

Factoring is useful to cryptography because it is

(currently) difficult to find the answer, but easy to

check the answer.

Question: If there is a fast algorithm to check an

answer to a given question, does this imply that there

is also a fast algorithm to find an answer?

We don’t know the answer to this question.

• If the answer to this question is yes, then factoring

can not be inherently difficult (bad news for e-

commerce), but a large number of other problems that

we would like to have fast algorithms for must have

fast algorithms (good news).

• If the answer to this question is no, then a large

number of problems that we would like to have fast

algorithms for can not have fast algorithms. These

problems are called NP-hard problems.

This question is (roughly) the P = NP problem.

It is one of the Clay Millennium prize questions for which

there is a $1,000,000.00 (U.S.) prize.

In this part of the course we will look at:

• How do we talk about the speed of an algorithm?

• Where do we draw the line between fast and slow

algorithms?
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• How do we talk about the difficulty of a problem?

• Where do we draw the line between easy and difficult

problems?

• What are the problem classes P and NP?

• How do we show that a problem is in NP?

• How do we show that a problem is NP-hard? (An

NP-hard problem is one that is inherently difficult, if

P �= NP.)

• What are the practical implications of all this theory?
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The time a piece of code takes

Depends on

• Details of the machine

• How the compiler translates it.

• The “size” of the input.

• Perhaps also, the value of the input.

Example:

var sum := 0.0 ·
for i ∈ {0,..N} ·

sum += A[i] ;

var average := sum/N ·

On any particular machine and compiler, the exact

amount of time taken is

a×N + b

where a and b are fixed positive coefficients. We say the

algorithm is linear-time. Or that it has a time-complexity

of Θ(N) (“order N”) time

Note. For large, N the b term becomes insignificant. For

large N the running time is essentially proportional to N.

Suppose another algorithm takes time

c×N2 + d×N + e

(where c, d, and e are fixed coefficients.) We say it is

quadratic-time, or that it has a time complexity of Θ(N2).

Type set March 30, 2014 4



Advanced Computing Concepts Slide Set 2-0. Efficiency of Algorithms (C) Theodore Norvell

Note. For large N , the running time is essentially

proportional to N2.

Regardless of the constants, for sufficently large N , the

linear time algorithm will be quicker.

Thm. Given a Θ(N) time algorithm and a Θ(N2) time

algorithm. There exists a size of input such that the Θ(N)
algorithm is the faster one for all equal or larger sizes of

inputs.

When comparing algorithms on large inputs, we can

ignore:

• All but the dominating term.

• All the constants

This is good because the constants depend on the

machine and the compiler and thus are hard to know and

liable to change.

Time functions of an algorithm:

For a given input X, the amount of time the algorithm will

take: T (X).

Size of input: S(X), appropriate function varies from

problem to problem.

Example: Sorting – S(X) is the conventionally the

number of items to be sorted.

Example: Array multiplication: S(X) is conventionally the

size of a side of an array.
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For any number N , consider the set of all inputs of that

size:

I(N) = {X | S(X) = N}

Worst case time function: For a given size of input N
what is the longest the algorithm will take?

WT (N) = max
X∈I(N)

T (X)

Average case time function: For a given size of input

N what is the expected time the algorithm will take?

Suppose p(X) is the probability that an input of size

S(X) is X.

Define ATp(N) =
∑

X∈I(N) p(X)× T (X)

When the probability distribution is uniform we have

AT (N) =

∑
X∈I(N) T (X)

|I(N)|
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The speed of programs can be considered:

• Quantitatively – What are T , WT , AT .

∗ Requires knowledge of: coding of algorithm as

program, compiler, hardware.

∗ Can be measured in tests.

• Qualitatively – what kind of functions are WT and

AT? Do they grow quickly or slowly?

∗ Does not depend on details of coding, compiler, or

hardware.

∗ Does require assumption that certain operations

require a fixed amount of time:

· Usually we assume that Comparisons of ints,

floats, chars. Arithmetic operations on ints,

floats, chars. Fetch from and store to memory

take constant time.

We will look at the qualitative speed of algorithms.
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Example: sorting algorithms

Selection sort

procedure SelectionSort() (

// Invariant: A(k,..N) is sorted

// and ∀i, j · 0 ≤ i < k ≤ j < N⇒ A(i) ≤ A(j)
var k := N ·
while k > 1 do (

// Find maximum in A(0,..k)

var m :=0 ·
var big := A(m) ·
var n := 1 ·
// Invariant: 0 < n ≤ k and

// A(m) = big = max{i ∈ {0, ..n} · A(i)}
while n < k do(

if A(n)> big then (m := n; big := A(n))

else skip ;

n := n+1 ) ;

// Swap A(k-1) with A(m)

A(k-1), A(m), k := big, A(k-1), k-1 ) )

Counting data comparisons: 1 per iteration of inner loop.

Iterations of inner loop. k per each iteration of outer loop.

Iterations of outer loop: N-1., with k = N-1, N-2, ..., 1
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So total # of data comparisons:

(N − 1) + (N − 2) + ... + 1

=
N−1∑

i=1

i

= N(N − 1)/2

=
N2 −N

2
Similarly each other operation will be done a fixed, linear,

or quadratic number of times.

We can write WT as

WTselection(N) = k2N
2 + k1N + k0

for some constants k2, k1, k0, with k2 > 0.
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Merge Sort:

void merge(int i, int j, int k, double A[N] ) {

static double B[N] ;

for( int r = i ; r < k ; ++r ) B[r] = A[r] ;

for( int p=i, q=j, r=i ; p!=j || q!=k ; ) {

if(q==k || p!=j && B[p] < B[q]) A[r++] = B[p++];

else A[r++] = B[q++ ] ; } }

void merge_sort1(int i, int k, double A[N] ) {

if( i < k-1 ) {

int j = (i+k)/2 ;

merge_sort1( i, j, A ) ;

merge_sort1( j, k, A ) ;

merge( i, j, k, A ) ; } }

void merge_sort( double A[N] ) {

merge_sort( 0, N, A ) ; }

How it works:

We

• split the array in half.

• sort each half

• merge the two halves together.

Sorting the two halves is also done be merge sort.
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(By the way, this code can be optimized to eliminate

about half the copies.)

How fast is it?

To merge two segments of total size M together takes

2M data moves.

Consider the tree of calls.

For each call, the amount of work done is c0 + c1(k − i) if

(k − i) ≥ 2 and c2 when (k − i) < 2

For N = 64, there is

• One call with (k − i) = 64

• Two calls with (k − i) = 32

• ...

• 64 calls with (k − i) = 1
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Total time for N = 2n is c2N +
∑n

m=1 2
n−m(c0 + c12

m)

c2N +
n∑

m=1

2n−m(c0 + c12
m)

=

c2N + c0

n∑

m=1

2n−m + c1

n∑

m=1

2n−m2m

=

c2N + c0

n−1∑

m=0

2m + c1

n∑

m=1

N

=

c2N + c0 (2
n − 1) + c1Nn

=

c2N + c0N − c0 + c1N log2N

So the time is

WTmerge(N) = cN log2N + bN + a

for constants a, b, and c.
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Which is better?

Regardless of the constants, we can always find an input

size after which WTmerge is smaller than WTselection.
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The BIG-Theta and Big-Oh notation —

informally

Informally:

• If g(N) = N then Θ(g) is the set of functions that grow

linearly.

• If g(N) = N2 then Θ(g) is the set of functions that grow

quadratically.

• If g(N) = 2N then Θ(g) is the set of functions that

double as their argument increases.

The BIG-Theta notation — formally

Defn: A real-to-real function is a function f such that

f (x) is real, for all real x.

Defn: If g is a real-to-real function then Θ(g) is a set of

functions.

A function f is in Θ(g) iff

• there exist positive numbers c, d, and M such that

0 ≤ c× g(N) ≤ f (N) ≤ d× g(N), for all N ≥M.

This means that, for sufficiently large N , f (N) is trapped

between two multiples of g(N).
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In a picture
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Here f (N) = 1
2N

2 − 10N + 50 and g(N) = N2.

We use c = 1
4, d =

1
2 and M = 40.

The solid lines in the figure are 1
4N

2 and 1
2N

2.

Exercise: prove that for all N ≥ 40
1

4
N2 ≤ f(N) ≤

1

2
N2

This shows that f ∈ Θ(g) where g(N) = N2.

Notation: Usually instead of Θ(g), we actually write

Θ(g(N)). This is a conventional ‘abuse of notation’.

For example, when you see Θ(N2), what is really meant

is Θ(g) where g(N) = N2.

Example: We can restate the last result as f ∈ Θ(N2).

Note:The meaning of Θ(g(N)) does not depend on N ; it

depends on g.

Notation: Many writers actually write f (N) ∈ Θ(g(N)) or

even f (N) = Θ(g(N)). These are unfortunate notations,
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but you will often see them. In each case, what is meant

is f ∈ Θ(g).

Example: If f (N) = 2N2 +N + 1 then f is in Θ(N2)

Example: If f (N) = 2N2 +N + 1 then f is not in Θ(N3)

Example: WTmerge is Θ(N × log2N)

Example: WTselection is in Θ(N2)

Note that, if f ∈ Θ(g) then, if it is defined, limN→∞
f(N)
g(N) is

neither 0 nor infinity, but rather some positive number.

Also note that, constants don’t matter. For example

Θ(N2) = Θ(
1

2
N2) = Θ(2N2).

And that lower order terms don’t matter. For example

Θ(N log2N) = Θ(N log2N +N) = Θ(N log2N + 4).

Usually we write the function inside Θ in the simplest

possible terms.

The complexity of an algorithm

Defn. If the worst-case time function of an algorithm is in

Θ(g), we say that the worst-case time complexity of the

algorithm is Θ(g) or, equivalently, that the algorithm has

a worst-case time complexity of Θ(g).

(The words worst-case may be omitted.)

Defn. If the average-case time function of an algorithm is

in Θ(g), we say that the average-case time complexity of

the algorithm is Θ(g) or, equivalently, that the algorithm

has a average-case time complexity of Θ(g).

For example:
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• mergesort has a time complexity of Θ(N log2N)

• Selection sort has a time complexity of Θ(N2).

• Quicksort has a worst-case time complexity of Θ(N2),
but an average case time complexity of Θ(N log2N)

Upper bounds and big-Oh

Sometimes we just want to say that there is an upper-

bound on the complexity of a function.

In this case we use a set O(g) of functions that do not

grow significantly quicker than g.

Formally we define that a function f is in O(g) iff there

exists positive constants d and M such that

0 ≤ f(N) ≤ d× g(N), for all N ≥M.

For example
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0
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2 − 10N + 50 (dashed line) is in O(N2) but so is

N log2N (dotted line).

(The solid line is 1
2N

2)
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Saying that the time-complexity of an algorithm is in

O(g) means that it will not be radically slower than an

algorithm with time complexity Θ(g).

Saying that the time-complexity of an algorithm is in O(g)
leaves open the possibility that it could be significantly

faster than an algorithm with time complexity Θ(g).

Thus O sets form a hierarchy

O(1) ⊂ O(logN) ⊂ O(N) ⊂ O(N logN) ⊂ O(N2)

⊂ O(N3) ⊂ · · · ⊂ O(2N) ⊂ O(3N) ⊂ · · · ⊂ O(N !)

On the other hand, Θ(f ) and Θ(g) are either equal or

disjoint.

Some rules for working with assymptotic

complexity

• Ignore low order terms: if f is in O(g), then Θ(f (N) +
g(N)) = Θ(g(N)).

Example: Θ(N + log2N) = Θ(N)

Example: Θ(N2 +N + 1) = Θ(N2)

• Example: Θ(2N) = Θ(N +N) = Θ(N)

• Ignore multiplicative constants:Θ(c×f (N)) = Θ(f (N))

Example Θ(5N2) = Θ(N2)

Example Θ(log2N) = Θ(log2 10× log10N) = Θ(log10N)

Convention: bases are left off logs: Θ(N log2N) =
Θ(N logN)

Finding the complexity of an algorithm
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• Find an operation that is executed at least as fre-

quently as any other operation.

• Find the number of times that operation is executed as

a function of the input size.

• Find the complexity of that function.

Why? Suppose that an algorithm has k operations

numbered {0, ..k}.

Let fi(N) be the number of times operation i is executed

for the worst case input of size N .

Let ci be the time to execute operation i. Now

WT (N) =
∑

i∈{0,..k}

ci × fi(N)

Now let j be the most frequently executed operation. I.e.

fi ∈ O(fj), for all i. Then WT ∈ Θ(fj).

Example: Searching for a string

We want to find the first occurrence of a string p in a

string t

For example

t = “tatatatagcttatagg”

p = “tatag”

the result is 4.

The input size will be measured by two variables:

• N the length of t and

•M the length of p.

A simple algorithm is
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proc match( in p : char∗, in t : char∗, out found : bool,

out w : int ) (

w := 0 ;
var i := 0 ·
// inv: 0 ≤ i ≤ len(p) ∧ 0 ≤ w + i ≤ len(t)
// ∧ p[0, ..i] = t[w, ..w + i]
// ∧ ¬ (∃v · v < w ∧ t[v, ..v + len(p)] = p)
while i < len(p) ∧ w + i < len(t) do

if t(w + i) = p(i)
then i := i + 1
else w, i := w + 1, 0 ;

found := (i = len(p)) )

The invariant is illustrated by

t :
w︷︸︸︷

tata

t[w,..w+6]︷ ︸︸ ︷
tatcag agcttatagg

p : tatcag︸ ︷︷ ︸
p[0,..6]

ac

This algorithm checks for p at each position of t.

Suppose the length of p is M and the length of t is N .

Count comparisons.

The algorithm makes up to M comparisons at each of

N −M places.

It could also make up to (M − 1) comparisons at one

place and (M − 2) at one place, ...

So the time complexity is Θ(M×N−M2+
∑M

i=1(M−i)) =
Θ(M ×N).
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Improving the worst case

The above algorithm ‘shifts’ the pattern by one position

at a time.

Consider the following mismatch:

↓ w ↓ w + 4
t ... a b a b q ? ? ...

� � � � �

p a b a b c

↑ i = 4
Since ‘q’ does not appear in the first i+ 1 positions of the

pattern, we can shift the pattern by i + 1.

Consider the following mismatch:

↓ w ↓ w + 4
t ... a b a b a ? ? ...

� � � � �

p a b a b c

↑ i = 4
Since the mismatch occurs at position 4 of the pattern

string, we know that

t[w, ..w + 4] = p[0, ..4]

We also know that t(w + 4) = ‘a’. Shifting the pattern by

one will not work unless

t[w + 1, ..w + 5] = p[0, ..4],

i.e. unless

p[1, ..4] = p[0, ..3] and ‘a’ = p(3)

This is something we can determine to be false before

we look at t. I.e. by looking only at p we can determine
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that, if there is a mismatch when i = 4 and t(w + i) =‘a’,

then there is no point shifting by 1.

Likewise shifting by 2 can not work unless

t[w + 2, ..w + 4] = p[0, ..2] and t(w + 4) = p(2),

i.e. unless

p[2, ..4] = p[0, ..2] and ‘a’ = p(2)

This is true, so shifting by 2 might work, when i = 4 and

t(w + i) =‘a’

After shifting by 2 we have:

↓ w ↓ w + i
t ... a b a b a ? ? ...

� � �

p a b a b c

↑ i
We can infer the equalities shown without further

comparisons, so i may be set to 3, as shown. (3 is i+ 1−
the shift)

We need never compare a target string item more than

once!
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Create a table indexed by:

• The number of successful comparisons: i — 0 ≤ i <
len(p)

• The next input character: c.

Compute shift(i, c) as the minimum value of s that makes

all the equalities in this picture true:
↓ s ↓ i

p(0) p(1) · · · p(s) p(s + 1) · · · c
� � � �

p(0) p(1) · · · p(i− s)
↑ i− s

Note that:

• When p(i) = c, we have shift(i, c) = 0.
∗ This means no shift.

• At the other extreme, shift(i, c) is potentially as large

as i + 1.
∗ This happens, for example, when c does not occur

in the pattern.
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w := 0 ;
var i := 0 ·
// inv: 0 ≤ i ≤ len(p) ∧ 0 ≤ w + i ≤ len(t)
// ∧ p[0, ..i] = t[w, ..w + i]
// ∧ ¬ (∃v · v < w ∧ t[v, ..v + len(p)] = p)
while i < len(p) ∧ w + i < len(t) do (

let s := shift( i, t(w + i) )·
w, i := w + s, i + 1− s ) ;

found := (i = len(p))

Since, in each iteration, w + i increases by one, the total

number of iterations is no more than N , where N is the

length of the target string.

So the whole algorithm has time complexity of Θ(N) +

the time to build the shift table. Building the shift table

has complexity of Θ(M2).

Better yet

There is a variation on the above algorithm that uses only

a table indexed by the position of the mismatch. This is

the Knuth-Morris-Pratt algorithm and is Θ(N +M)
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