
Advanced Computing Concepts Slide Set 2-0. Time Complexity Examples (C) Theodore Norvell

Some examples of Time Complexity

Exponentiation of small numbers

Slow version

Consider the complexity of calculating the xy for a

nonnegative integer y.

We will assume that adding, multiplying, dividing, and

comparing numbers each take (at most) a constant

amount of time.

(This assumption makes sense as long as x, y, and xy

are all small enough to fit in a ‘machine word’)

z := 1 ;
while y > 0 do

z, y := z × x, y − 1

The body of the loop is Θ(1). The number of iterations is

y, so the algorithm’s time complexity is Θ(y).

Type set March 20, 2012 1

Advanced Computing Concepts Slide Set 2-0. Time Complexity Examples (C) Theodore Norvell

Fast exponentiation

Now let’s look at the ‘fast’ version

z := 1;
while y > 0 do

if odd(y) then z, y := z × x, y − 1
else x, y := x2, y/2

Again the loop body is constant time (Θ(1)).

The number of iterations is described by

f(y) = 0, if y = 0

f(y) = 1 + f(y − 1), if y > 0 and y is odd

f(y) = 1 + f(y/2), if y > 0 and y is even

Consider y in binary notation, for example y = 21 =
10101(2)

What sequence of values does y take on?

10101(2)
10100(2)
1010(2)
101(2)
100(2)
10(2)
1(2)
0(2)

f (21) = 7. The exact value for f(y) is the number of 0s +

2 times the number of 1s − 1

Type set March 20, 2012 2

Advanced Computing Concepts Slide Set 2-0. Time Complexity Examples (C) Theodore Norvell

The length of y in bits is decreased by 1 every 1 or 2

iterations. The number of iterations is thus limited to 2

times the number of bits required to represent y

f(y) ≤ 2× �log2 y� ≤ 2× (log2 y + 1)

Thus the time for the algorithm is Θ(2 log2 y + 2) =
Θ(log y).

Type set March 20, 2012 3

Advanced Computing Concepts Slide Set 2-0. Time Complexity Examples (C) Theodore Norvell

Modular arithmetic on large natural

numbers

Large natural numbers can be represented using arrays

of words where each word can hold a value in {0, ..B},
where B is a base such that 2 ≤ B ≤ 2w with w being

the width of a word in bits. The number represented by

an array X is

x =

∑

i∈{0,..|X|}

Bi ×X(i)

Suppose we want to compute xymodBN with x, y, and z
represented by arrays X, Y , and Z of size N .

How long do the operations in the fast exponentiation

algorithm take?

All operations are done modulo BN .

• Provided B is even, we can determine whether y is

odd by determining whether Y (0) is odd. Θ(1)

• Adding two numbers takes N word level additions and

there are N − 1 ‘carry’ additions. So we have Θ(N)

Type set March 20, 2012 4

Advanced Computing Concepts Slide Set 2-0. Time Complexity Examples (C) Theodore Norvell

• Multiplying using the method traditionally taught to

children produces N partial products of size N each

(we can discard upper digits). For example with

B = 10 and N = 5 we have
87654

× 45676
25924

+ 35780
+ 92400
+ 70000
+ 60000
84104

• Each digit of each partial product can be computed

in constant time, so computing one partial product is

Θ(N). There are in total N partial products, so it takes

Θ(N2) to compute all the partial products. We can

also do the N − 1 additions in Θ(N2). (If we are clever

we can reduce the time by not adding the inevitable

0 digits. However, over 1/2 the Θ(N2) digits must be

processed, so the algorithm is still Θ(N2).)

• Subtracting 1 and dividing an even number by two

each take Θ(N) time.

Now let’s revisit the algorithm

z := 1;
while y > 0 do

if odd(y) then z, y := (z × x)modBN , y − 1
else x, y := x2modBN , y/2

Type set March 20, 2012 5

Advanced Computing Concepts Slide Set 2-0. Time Complexity Examples (C) Theodore Norvell

We’ll assume (for simplicity) B = 2w for some natural

w > 1.

Each iteration has one multiplication, so each iteration

is Θ(N2). In the worst case, y is the largest number

possible, y = BN − 1 = 2Nw− 1. The number of iterations

is 2Nw − 1. The total time complexity is Θ(wN3).

Exercise: Generalize the above argument to the case of

B ≤ 2w.

Note: We have changed the way that we measure the

size of the input since the previous examples. There the

input size was the “value” of the numbers: x, y.

Here we are measuring the “size” of the numbers in

words (N) and the size of the words in bits w.

(Both measures are commonly used for arithmetic

problems!)

How do these relate? In the worst case y ∼= 2Nw. So

log2 y
∼= Nw. In the case where N = 1 we have

Θ(wN3) = Θ(w) = Θ(log y)

so the results of this section generalize the results of the

previous.

Question: Is it better to use a big base or a small base?

Suppose our machine offers a choice of 32 bit or 16 bit

arithmetic. Suppose we need to compute xymod 22048.

It takes N = 64 words to represent a number when

w = 32. The number of operations is about cwN3 for

some constant c. So about c223 are needed.
Type set March 20, 2012 6

Advanced Computing Concepts Slide Set 2-0. Time Complexity Examples (C) Theodore Norvell

Using w = 16 and N = 128 we get c225, which is 4 times

more. So unless the 16 bit arithmetic is much faster than

the 32 bit arithmetic, we are better off with the larger

base.

Challenge:. There are quicker ways to multiply. Can you

find one?

Type set March 20, 2012 7

Advanced Computing Concepts Slide Set 2-0. Time Complexity Examples (C) Theodore Norvell

Searching a Maze

Consider searching a maze that consists of ‘places’ and

‘tunnels’.

• There is 1 ‘Root’ place that has no way in and 2 ways

out

• ‘Branch’ places have 1 way in and 2 ways out.

• ‘Leaf’ places have 1 way in and no way out.

All leaf places are N tunnels away from the root place.

0 or more of the leaf places have a pot of gold.

Problem: You start at the root place and must figure out

whether there is any gold in the maze.

while true do

if there is gold, stop

else if there is an unexplored out-going tunnel,

traverse it and mark it as explored

else if there is an in-coming tunnel,

traverse it

else stop

Time complexity. We will assume that each operation

in the loop is Θ(1) .

The maze forms a directed tree with a branching factor

of 2.

There are 2N+1 − 1 places and t = 2N+1 − 2 tunnels.

Type set March 20, 2012 8

Advanced Computing Concepts Slide Set 2-0. Time Complexity Examples (C) Theodore Norvell

In the worst case —no gold— the algorithm traverses

each tunnel twice and then stops. So the number of

iterations is 1 + 2t or 2N+2 − 3.

So the algorithm is Θ(2N).

Some more problems on mazes

Input: A maze of N places and with up to 1 tunnel

connecting each pair of places. (Tunnels may cross

without connecting.)

Problem: Is every place reachable from each other

place?

Problem: Is there a path that traverses each tunnel

exactly once and returns to the starting place?

Problem: Is there a path that visits each place exactly

once and returns to the starting place?

Problem: Each place needs to be painted. But, for

reasons of fashion, any two places connected by a

tunnel must be painted different colours. How many

colours are needed, minimum?

Find the “best” algorithm you can for each problem.

What is the time complexity of each algorithm in terms of

N?

Type set March 20, 2012 9

