
Advanced Computing Concepts Slide Set 2-2. Problem Complexity. (C) Theodore Norvell

The complexity of problems

Problem complexity

So far we’ve only looked at the time complexity of

algorithms.

For a given problem, we can ask:

What is the worst-case time complexity of the fastest

algorithm that solves the problem?

The answer is called the (worst-case time) complexity of

the problem.

The answer will be in the form Θ(f) for some f .

Big Ω notation

Notation: For real-to-real functions f and g. f ∈ Ω(g) iff

there exist positive c and M such that

0 ≤ c× g(N) ≤ f (N), for all N > M

Ω(g) is the set of functions that grow roughly as fast or

faster than g.

Note Θ(g) = O(g) ∩ Ω(g)

Lower bounds and Upper bounds

We can provide partial answers to the question of the

complexity of a problem in two ways

• We can show that there is an algorithm for the problem

that has a worst-case time complexity in O(f) for

some f . This establishes an upper bound of O(f) on

Type set March 22, 2012 1

Advanced Computing Concepts Slide Set 2-2. Problem Complexity. (C) Theodore Norvell

the complexity of the problem.

• We can show that every algorithm for the problem has

a time complexity in Ω(g). This establishes a lower

bound on the complexity of the the problem.

Lower bounds

Given a problem: how fast is the fastest algorithm that

solves the problem?

Of course a quantitative answer will likely change as

faster hardware becomes available.

We may be able to show that every algorithm that solves

the problem is in Ω(f)

In this case we know that Ω(f) is a lower-bound on the

complexity of the problem.

Example Shortly we will show, any algorithm

for sorting (based on comparisons) requires at least

�log2N !� comparison operations and that this in

Θ(N logN) and so the problem has a lower bound

of Ω(N logN).

Upper bounds

Conversely if we know that there is an algorithm that is

Θ(g(N)) that solves the problem, then O(g(N)) is an

upper-bound on the complexity of the problem.

Example We know MergeSort is Θ(N logN), so

sorting has an upper bound of O(N logN).

Type set March 22, 2012 2

Advanced Computing Concepts Slide Set 2-2. Problem Complexity. (C) Theodore Norvell

Tight bounds

If we know that the same complexity level is both an

upper and a lower bound, then we have a “tight bound”

or “exact bound”. I.e. if O(f) is an upper bound and Ω(f)
is a lower bound, then Θ(f) is a tight bound.

A tight bound means we know exactly how hard the

problem is.

Until we know a tight bound, then either we have failed to

find the asymptotically fastest algorithm or we have failed

to prove the best possible lower bound, or both.

Example Since sorting (based on comparisons)

has a lower bound of Ω(N logN) and an upper bound of

O(N logN), we know exactly how difficult sorting is.

We can make quantitative improvements on MergeSort,

but there can be no algorithm with a better time

complexity.

Type set March 22, 2012 3

Advanced Computing Concepts Slide Set 2-2. Problem Complexity. (C) Theodore Norvell

A lower bound for sorting

A restricted model of computation

In this model of computation two items may be compared

or moved, but we will not otherwise access the value of

an item.

An algorithm in this model can be thought of as a set of

trees, one for each tree for size of input.

Each tree node either represents an action or a

comparison. Action nodes have zero or one child,

comparison nodes have 1 or 2 children. (A comparison

whose conclusion is forgone has 1 child.)

For simplicity, I’ll assume that no two items of the input

are the same.

[Considering only a restricted set of inputs is kosher,

because any lower bound we find for the restricted

problem must also hold for the unrestricted problem.]

Selection sort

Selection sort

for i← [0, ..n− 1] do

var j := i
for k ← [i + 1, ..n] do if(a[k] < a[j] then j := k end

if end for

swap(i, j)
end for

Type set March 22, 2012 4

Advanced Computing Concepts Slide Set 2-2. Problem Complexity. (C) Theodore Norvell

Here is a tree for selection sort with n = 3. Assume that

a < b < c the leaves show the input that corresponds to

each path.

A[0] < A[1]

A[1] < A[2] A[1] < A[2] A[1] < A[2] A[1] < A[2]

A[0] < A[2] A[1] < A[2]

Swap(1,1)

Swap(0,0)

Swap(1,2) Swap(1,2) Swap(1,1)Swap(1,2)Swap(1,1)

Swap(0,2)
Swap(0,1) Swap(0,2)

< >

abc acb bca bac cab cba

Merge sort

Next is a directed acyclic graph that can be expanded to

a tree with 24 leaves representing merge sort for n = 4

Type set March 22, 2012 5

Advanced Computing Concepts Slide Set 2-2. Problem Complexity. (C) Theodore Norvell

For the tree model of computation

For a given n

• the best case time is the length of the shortest path

from root to leaf

• the worst case time is the length of the longest path

from root to leaf.

To simplify we’ll only count comparisons.

[Since we are investigating lower bounds, it is kosher to

ignore whole classes of operations. If a sorting algorithm

requires at least f (n) comparisons, then it must require

at least f(n) operations.]

Thus the worst (and best, and average) case time for

selection sort is n2−n
2

comparisons.

But selection sort is not the best algorithm. We want a

result that even the best algorithm can not beat.

Type set March 22, 2012 6

Advanced Computing Concepts Slide Set 2-2. Problem Complexity. (C) Theodore Norvell

Merge sort, for n = 2k, as we will show, requires

Θ(n log n) comparisons.

Considering all trees

The best algorithm has the shortest trees (as n

approaches ∞)

Key key question is:

• How short can a tree for an input of size n be?

First we ask an easier question

• How many leaves will a tree for an input of size n

have?

The inputs [2, 1, 3] and [4, 1, 6] look the same in this model

as the only way to access the data is by comparing.

There are n! distinct inputs, as there are n! permutations

of n distinct values.

Any two permutations of the input require the algorithm

to do something different. Each possible input requires a

different path through the tree and hence a different leaf.

There are n! leaves in each tree for inputs of size n

regardless of the algorithm.

So our key question becomes

• If a tree has n! leaves, what is the shortest its longest

path can be?

We need to consider the squattest trees.

Lemma 0 a binary tree of height x has at most 2x leaves.

Type set March 22, 2012 7

Advanced Computing Concepts Slide Set 2-2. Problem Complexity. (C) Theodore Norvell

Corollary 0 a binary tree with y leaves has height at

least �log2 y�.

Lemma 1 log2(n!) ∈ Ω(n log n)

Proof of lemma 1:

log2(n!)

=

log2(1× 2× ...n)

=

log2 2 + log2 3 + ... + log2 n

> ∫ n+1

2

log2 (x− 1) dx

For the final step above, we provide a “proof by picture”

1 2 3 4 5 6 7 8
0

1

2

3

x

y

log2 2 + log2 3... + log2 n >
∫ n+1
2

log2 (x− 1) dx

Type set March 22, 2012 8

Advanced Computing Concepts Slide Set 2-2. Problem Complexity. (C) Theodore Norvell

∫ n+1

2

log2 (x− 1) dx

=
1

ln 2

∫ n

1

lnx dx

= “

∫
lnx dx = x lnx− x”

1

ln 2
((n lnn− n)− (1 ln 1− 1))

=
1

ln 2
(n lnn− n + 1)

∈ “The dominant term is
1

ln 2
n lnn”

Ω(n log n)

Proof of the main result

The height of a binary tree with n! leaves

≥ “Corollary 0”

�log2 n!�

≥ “Lemma 1”

Ω(n log n)

Therefore, for every algorithm, there is at least one input

that requires at least Ω(n log n) comparisons to sort.

So Ω(n log n) is a lower bound on the complexity of

sorting.

• There is no point trying to find an algorithm that is

Type set March 22, 2012 9

Advanced Computing Concepts Slide Set 2-2. Problem Complexity. (C) Theodore Norvell

significantly better than merge sort or heap sort that

accesses the data only by comparison.

Since O(n log n) is an upper bound and Ω(n log n) is a

lower bound, Θ(n log n) is an exact bound.

We now know the complexity of sorting.

Unfortunately

Lower bounds are seldom so easy to prove.

How good is merge sort quantitatively?

By the way:

�log2(1024!)� = 8770
so merge sort with no more than

m(1) = 0

m(2k) = 2m(2k−1) + 2k − 1

m(1024) = 9217

comparisons is quite close to optimal.

How good is quicksort quantitatively?

Quicksort, on the other hand, takes (on average) 14, 193
comparison, for n = 1, 024. Quicksort is quick because it

does, on average, fewer moves than merge sort. Merge

sort does roughly one move per comparison, whereas

quicksort does about one move per two comparisons.)

But maybe there are quicker methods ...

... that don’t use just comparison.

Indeed there are.

Type set March 22, 2012 10

Advanced Computing Concepts Slide Set 2-2. Problem Complexity. (C) Theodore Norvell

Consider sorting a large array of 9 digit social insurance

numbers:

• Partition the sequence into 10 parts based on the first

digit.

• Now re-partition each of the ten parts based on the

second digit.

• Now re-partition each of the 100 parts based on the

third digit.

• ...

• Finally re-partition each of the 100,000,000 partitions

based on the last digit.

Each step can be seen to be Θ(N) so the 9 steps

together are Θ(N).

But:

• We limited the number of different values that can be

sorted to 109. Thus we subtly simplified the problem.

Comparison based sorting is not thusly limited.

Type set March 22, 2012 11

