
Advanced Computing Concepts for Engineering, 2011. Slide Set bg-0 c© Theodore Norvell, Memorial University

Outline of the course

We will look at the following topics

Behaviour specification

We will look at the following questions

• How do we describe a problem to be solved? (specifi-

cation)

• Given a program, exactly what problem does it solve?

(documentation)

• Given a problem, what is a program to solve it? (design

or derivation)

• Given a problem and a program, does the program

solve the problem? (verification)

Why?

• Designing correct programs is difficult.

• It is more difficult when you don’t have a clear idea of

what the specification is.

• Programs that are not correct are expensive and

dangerous.

(Note: The word “program” suggests “software”. However

the same considerations apply to any kind of engineered

system. In this part of the course we will concentrate on

so-called “transformational systems” which are systems

that transform their input data into some output data.

Later in the course we will look at “interactive systems” —

systems where part of the output may be required prior to
Typeset January 5, 2012 1



Advanced Computing Concepts for Engineering, 2011. Slide Set bg-0 c© Theodore Norvell, Memorial University

all of the input being available— and “reactive systems”,

which are interactive systems with time constraints. All

these kinds of systems can be realized in either hardware

or software.)

Formal language theory and interactive

systems

We will look at the following questions

• How can we mathematically model a state-based

computer system?

• How does the finiteness of memory limit the problems

systems can solve?

• Are there problems that computer systems can not

solve?

By looking at state-based systems, we can expand our

vision to include interactive and reactive systems.

Why?

• Interactive, reactive, and parallel systems are quite

important.

• Given a problem, what model of computation is

required to solve it? E.g. does your problem require a

fixed or unlimited amount of memory.

We can apply these ideas to some interesting problems

• How can we formally describe languages (set of

strings)

• How can we analyse strings using finite state systems

Typeset January 5, 2012 2



Advanced Computing Concepts for Engineering, 2011. Slide Set bg-0 c© Theodore Norvell, Memorial University

• How can we analyse strings using infinite state

systems

Efficiency (Computational Complexity)

We will look at the theory of “computational complexity”.

More efficient things do more with fewer resources.

In computing we are interested in solving bigger problems

with less time (or space or sometimes something else).

We look at the following questions

• Given an algorithm, how efficient is it? (Algorithm

complexity)

• Given a problem, what is the efficiency of the most

efficient algorithm? (Problem complexity)

• How are problems linked together in terms of effi-

ciency? (Complexity classes)

In this part of the course we will explore the idea of

“complexity classes”. This will give us a way of talking

about how fast (or space efficient) an algorithm is in a

way that is sufficiently vague that what we can prove

won’t be contradicted by minor changes to how the

algorithm is implemented, or by running the algorithm on

a faster computer.

Why?

• Before tackling a problem, it is a good idea to know

how hard it will be.

• Sometimes our solutions to problems turn out to be

Typeset January 5, 2012 3



Advanced Computing Concepts for Engineering, 2011. Slide Set bg-0 c© Theodore Norvell, Memorial University

impractically inefficient. Is this because the problem

was inherently hard, or because the solution is poor?

Typeset January 5, 2012 4


