
Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

Sets

A set is a collection of (mathematical) objects.

Each object x is either contained in a set S or not.

We write x ∈ S to mean ‘x is an element of S’ or ‘S
contains x’

We write x �∈ S to mean ‘x is not an element of S’ or ‘S
does not contain x’

Finite sets:

• ∅ the empty set. It contains no objects.

∗ In particular ∅ �∈ ∅

• {x} the set containing only x

• {x, y, z} the set containing x, y, and z, but nothing

else.

Some infinite sets:

• N the natural numbers: 0, 1, 2, 3, etc. Note 0 is

included!

• Z the integers: 0, −1, 1, −2, 2, −3, 3, etc.

• R the real numbers.

• Don’t confuse zero with the empty set: 0 �= ∅.

Equality: Two sets are considered equal (S = T) iff they

contain exactly the same objects.

• Therefore there is only one empty set (all empty set

are equal).

Typeset January 15, 2017 1

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

Union: S∪T is the set that contains all objects contained

either in S or in T .

• x ∈ (S ∪ T) exactly if x ∈ S or x ∈ T

Intersection: S ∩ T is the set that contains all objects

contained both in S and in T .

• x ∈ (S ∩ T) exactly if x ∈ S and x ∈ T

Subtraction: S − T is the set that contains all objects in

S that are not in T .

• x ∈ (S − T) exactly if x ∈ S but x /∈ T

Subsets:

• S ⊆ T means ‘S is a subset of T ’, i.e. every object in

S is also in T .

• In particular, S ⊆ S and ∅ ⊆ S, for any set S.

• E.g. N ⊆ Z

Strict subsets:

• S ⊂ T means ‘S is a subset of T and not equal to T ’.

• E.g. {1, 2} ⊂ {1, 2, 3} but {1, 2} �⊂ {1, 2}

Contigous sets of integers:

• {i, ..j} the set of all integers greater or equal to i and

less than j

• E.g. {3, ..7} = {3, 4, 5, 6}.

The size of a set

• |S| the number of members in S.

Don’t confuse singleton sets with their single element.

Typeset January 15, 2017 2

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

• 1 ∈ {1, 2, 3} but {1} �∈ {1, 2, 3}

• {1} ∈ {{1} , {2} , {3}} but 1 �∈ {{1} , {2} , {3}}

• Also ∅ ⊆ {1, 2, 3} but ∅ �∈ {1, 2, 3}

Typeset January 15, 2017 3

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

Set Comprehension

Let V be a variable (such as x, y, or α) and S be an

expression that describes a set.

Filtering. Let A be some boolean expression. (I.e. an

expression whose value is true or false).

• {x ∈ S | A} means ‘that subset of S containing

elements satisfying description A’.

• For example:

∗ {x ∈ R | x > 0} is the set of positive real numbers

∗ {x ∈ N | x/3 ∈ N} is the set of natural number that

are multiples of 3.

Mapping. Let E be some mathematical expression that

(typically) depends on x.

• {V ∈ S · E} is ‘the set of values of expression E where

x varies over all elements of S.’

• For example:

∗ {x ∈ N · 2× x} is the set of all even natural

numbers.

∗
{
x ∈ Z · x2

}
is the set of all square numbers.

• [The mapping notation is rather uncommon. Most

authors would write
{
x2 | x ∈ Z

}
where I write{

x ∈ Z · x2
}

. I use this notation for consistency with

other notations used in the course]

Filter and map

• {V ∈ V | A · E}— first filter, then map

Typeset January 15, 2017 4

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

• For example:

∗
{
x ∈ Z | 0 ≤ x < 8 · x2

}
= {0, 1, 4, 9, 16, 25, 36, 49}

Typeset January 15, 2017 5

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

Check

What is {a ∈ N | a < 10 · 3 + a}

A: {1, 2, 3}

B: {3, ..13}

C: {−3, ..7}

D: {3, ..10}

Typeset January 15, 2017 6

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

Pairs

Pairs, triples, and tuples:

• (x, y) is a pair consisting of x on the left and y on the

right.

• Note that (x, y) �= (y, x) unless x = y.

•We can also have triples (x, y, z) and in general

n-tuples for n ≥ 2.

• E.g. (1, π, true, ‘a’, ∅) is a 5-tuple.

Cartesian product:

• S × T is the set of all pairs (x, y) such that x ∈ S and

y ∈ T .

• S × T × U is the set of all triples (x, y, z) such that

x ∈ S, y ∈ T , and z ∈ U .

• Etc. Note that S × T × U is not quite the same as

S×(T × U) or (S × T)×U although all three sets have

the same number of members. E.g. (5, π, false) ∈
N× R× B whereas (5, (π, false)) ∈ N× (R× B)

Typeset January 15, 2017 7

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

Relations and functions.

• A binary relation is any triple (S, T,G) where S and

T are sets and G ⊆ S × T .

•We call S the source, T the target, and G the graph

of the relation.

∗ Notation: I’ll write x �→ y for (x, y) when dealing

with relations and function.

∗ Example: Let S = {0, 1, 2, 3} , T = {‘a’, ‘b’, ‘c’, ‘d’},

G = {0 �→ ‘a’, 0 �→ ‘b’, 2 �→ ‘b’, 3 �→ ‘d’}

Then (S, T,G) is a binary relation, illustrated as

Here are some more (illustrations of) binary rela-

tions.

• A partial function (S, T,G) is a relation such that,

for each x ∈ S, there is at most one y such that

(x, y) ∈ G.
∗ Example: Here are some examples of partial

functions

• A total function (S, T,G) is a relation such that, for

each x ∈ S, there is exactly one y such that (x, y) ∈ G.

• (Note that each ‘total function’ is also a ‘partial

Typeset January 15, 2017 8

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

function’!)

∗ Examples:

• Binary relations, partial functions and total functions

• Let f = (S, T,G) be a partial function and x ∈ S.

∗We say that f is defined for x if there is a y ∈ T
such that (x �→ y) ∈ G.

∗ (Since f is a partial functions such a y will be

unique.)

∗ (If f is a total function then it defined for all x in S.)

∗ If f is defined for x, f(x) means ‘that y ∈ T such

that (x, y) ∈ G’.

• S
tot
→ T is the set of all total functions with source S

and target T .

• S
par
→ T is the set of all partial functions with source S

and target T .

Domain and Range

The domain of this relation is the set of elements that

map to something

dom(R) = {x ∈ S | R is defined for x}

Typeset January 15, 2017 9

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

(For a total function f : S
tot
→ T the domain is the same

as the source S, i.e. dom(f) = S)

The range of R is the set of elements that appear as the

right component of a pair in the graph

rng(R) = {y ∈ T | there is an x ∈ S such that (x �→ y) ∈ G}

(For a total function f : S
tot
→ T the range of f may or may

not be T .)

Typeset January 15, 2017 10

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

Check

Which of the following statments is not true

A: All total functions are also partial functions

B: All partial functions are also binary relations

C: A total function relates every item in its source to

exactly one item in its target

D: A total function relates every item in its target to

exactly one item in its source

Typeset January 15, 2017 11

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

More Examples

• Consider (Z,Z, J) and

J = {(a �→ b) ∈ Z× Z | b = a× a}

∗ This is a total function (and hence also a partial

function and a relation).

∗ Its domain is Z

∗ Its range is {0, 1, 4, 9, ...}

• Consider (R,R, K) where

K = {(x �→ y) ∈ R× R | x× y = 1}

∗ This is a partial function. It is not total since there is

no (x �→ y) pair with x = 0.

∗ Its domain and range is R− {0.0}

• Consider (R,R, L) where

L = {(x �→ y) ∈ R× R | y × y = x}

• This is not a function since we have 4 �→ 2 and

4 �→ −2.
∗ It has a domain of {x ∈ R | x ≥ 0} and a range of

R.

Typeset January 15, 2017 12

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

Propositional logic

We assume a set B of size 2 B = {true, false}

Implication

Define a function (⇒) ∈ B×B
tot
→ B. so that, for all q ∈ B,

we have the following laws

(false⇒ q) = true “False implies anything”

(true⇒ q) = q “Identity”

In table form
p q p⇒ q
false false true

false true true

true false false

true true true

⇒ is called implication.

Its left operand is called the antecedant and its right

operand is called the consequent.

Some laws

(p⇒ p) = true Reflexivity

(p⇒ true) = true Domination

In most cases p ⇒ q corresponds to the English phrase

“if p, then q”.

Typeset January 15, 2017 13

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

Example: A restaurant has a policy “Anyone drinking

wine must be over 18 years of age.” We can rephrase

this as

“If you drink wine, then you are over 18 years of age.”

Consider a family of 4.

Drink Age Rule followed

Alice Cola 10 Yes

Bob Tea 42 Yes

Ching Wine 17 No

Deepa Wine 43 Yes

Example: A subroutine is documented as follows

/** If x is positive and less than 104,

* then the result is the square of x.

*/

int square(int x)

We run 4 tests:

x Result Documention obeyed

−23 17 Yes

−8 64 Yes

1 3 No

10 100 Yes
The subroutine passed 3 of 4 tests.

Typeset January 15, 2017 14

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

Follows from

⇐ is called follows from. It is simply implication turned

around

(p⇐ q) = (q ⇒ p)
It corresponds to the English phrase “p if q” or “p follows

from q”.

p q p⇐ q
false false true

false true false

true false true

true true true

Negation

Define (¬) ∈ B
tot
→ B such that

¬p = (p⇒ false) , for all p ∈ B

In table form
p ¬p
false true

true false

Some laws

¬¬p = p Involution

(p⇒ q) = (¬q ⇒ ¬p) Contrapositive

(p⇒ false) = ¬p Anti-identity

Typeset January 15, 2017 15

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

Conjunction (AND) and disjunction (OR)

Define disjunction (OR) by

(∨) ∈ B× B
tot
→ B

(p ∨ q) = (¬p⇒ q)

and conjunction (AND) by

(∧) ∈ B× B
tot
→ B

(p ∧ q) = ¬ (p⇒ ¬q)

The operands of ∧ are called conjuncts.

The operands of ∨ are called disjuncts.

Some laws
(true ∧ p) = p
(false ∨ p) = p

}
Identity

(false ∧ p) = false
(true ∨ p) = true

}
Domination

(p ∧ p) = p
(p ∨ p) = p

}
Idempotence

(p ∧ q) = (q ∧ p)
(p ∨ q) = (q ∨ p)

}
Commutativity

(p ∧ q) ∧ r = p ∧ (q ∧ r)
(p ∨ q) ∨ r = p ∨ (q ∨ r)

}
Associativity

(p ∧ (q ∨ r)) = ((p ∧ q) ∨ (p ∧ r))
(p ∨ (q ∧ r)) = ((p ∨ q) ∧ (p ∨ r))

}
Distributivity

(p ∧ ¬p) = false
(p ∨ ¬p) = true

}{
law of contradiction

law of excluded middle

¬(p ∧ q) = (¬p ∨ ¬q)
¬(p ∨ q) = (¬p ∧ ¬q)

}
De Morgan’s laws

Typeset January 15, 2017 16

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

(p⇒ q) = (¬p ∨ q) Material implication

(p⇒ q) = (¬q ⇒ ¬p) Contrapositive law

(p ∧ q ⇒ r) = (p⇒ (q ⇒ r)) Shunting

(p ∧ q ⇒ r) = ((p⇒ r) ∨ (q ⇒ r)) Distributivity

(p ∨ q ⇒ r) = ((p⇒ r) ∧ (q ⇒ r)) Distributivity

(p⇒ q ∧ r) = ((p⇒ q) ∧ (p⇒ r)) Distributivity

(p⇒ q ∨ r) = ((p⇒ q) ∨ (p⇒ r)) Distributivity

if p⇒ q and q ⇒ r then p⇒ r Transitivity

Typeset January 15, 2017 17

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

Check

Which of the following is not equivalent to

Paul likes cats ⇒ Paul is a good squash player

A: Paul is not a good squash player⇒ Paul does not like

cats

B: Either Paul is a good squash player or Paul does not

like cats or both.

C: Paul likes cats and therefore Paul is a good squash

player

D: It is not the case that Paul likes cats and is not good

squash player.

Typeset January 15, 2017 18

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

Equivalence and XOR

Define

(p⇔ q) = ((p⇒ q) ∧ (q ⇒ p))

(p� q) = ¬(p⇔ q)

(p⇔ q) is often called equivalence. It is really just

equality for Boolean values.

(p� q) is called exclusive or

Notation

This

Course

Digital

Logic

C/C++/

Java

C/C++/Java

bitwise
Other

⇒ ⊃,→
∧ · && &

∨ + || |
⇔ == ↔,≡
� ⊕ != ^ +

¬ ! ~ ∼

Typeset January 15, 2017 19

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

Predicate Logic

In natural language, one often wants to express

declarations such as

• All flavours of ice-cream are good.

• Some people like peanut butter.

• The Q output is always equal to the D input of the

previous cycle.

• The system will be in the initial state within 5 seconds

of the reset button being depressed.

To treat such sentences mathematically we extend logic

with “quantifiers”

• ∀, pronounced “for all”, and

• ∃, pronounced “exists”.

You can say that ∀ and ∃ have the same relationship to ∧
and ∨ (respectively) as

∑
has to +.

We will extend our 2-valued propositional logic to deal

with the quantifiers.

First, though, we look at substitution.

Substitution

Free and bound occurrences of variables

In Engineering, we often use variables to represent

quantities in the real-world and boolean expressions

containing variables to represent constraints on those

quantities, imposed by nature or by an engineered
Typeset January 15, 2017 20

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

system. For example, we might write

0 ≤ x < 1

to express that the x coordinate of the position of

something (say a robot’s hand) is constrained within

certain limits. A constraint

0 ≤ y < 1

means something quite different. So we can conclude

that the names matter. We call such occurrences of a

variable “free”.

Now consider the following pairs of expressions

• z =
∑N

i=0 f (i) and z =
∑N

j=0 f (j)

• z <
∫∞
0
f (u) du and z <

∫∞
0
f (v) dv

• {(x, y) ∈ R2 | x2 + y2 ≤ 1.0} and

{(a, b) ∈ R2 | a2 + b2 ≤ 1.0}

In each case, the two parts of the pair express the same

constraint: they are equivalent.

In these cases the variables i, j , u, v, x, y, a, and b are

internal to the expression. They don’t indicate anything

outside of the expression.

Such occurrences of variables are called “bound”.

An analogous situation comes up in software.

The two subroutines

void f() { ++i ; }

and

void f() { ++j ; }

are not equivalent. The occurences of i and j are free.

Typeset January 15, 2017 21

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

The two subroutines

int g(int i) { return i+1 ; }

and

int g(int j) { return j+1 ; }

are equivalent. The occurences of i and j are bound.

Single variable substitution

Suppose that E is an expression and that V is a variable.

We’ll write E [V : F] for the expression obtained by

replacing every free occurrence of variable V in E with F .

Examples

• (x/y)[x : y + z] is (y + z)/y

• (0 ≤ i < N ∧A[i] = 0)[i : i + 1] is

0 ≤ i + 1 < N ∧A[i + 1] = 0

Multiple variables

We sometimes need to replace a number of variables at

once.

We’ll write E [V0,V1, · · · ,Vn−1 : F0,F1, · · · ,Fn−1] to mean

the simultaneous replacement of n distinct variables by

n expressions.

Example

• (x/y)[x, y : y, x] is (y/x)

• whereas ((x/y)[x : y])[y : x] is (x/x)

Typeset January 15, 2017 22

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

Substitution and bound variables

Making the same substitution in two equivalent

expressions must give two equivalent expressions.

Thus we have to be a bit careful about exactly how

substitution is defined.

In making substitutions we do not substitute for bound

variables. For example in the expression
N−1∑

i=0

f(i)

the variable i is bound, so we don’t substitute for it. Thus

(
N−1∑

i=0

f(i)

)

[f, i : g, j + 1] is
N−1∑

i=0

g(i)

Furthermore, it may be necessary to rename bound

variables in order to avoid variables free in F from being

“captured”. For example
(
N−1∑

i=0

(k × i)

)

[k : i + 1] is

N−1∑

j=0

(k × j)

 [k : i + 1]

which is

N−1∑

j=0

((i + 1)× j)

Note that I had to rename i to j to avoid conflict with the

i in the replacement expression.

Notations

Different authors use different notations for substitution.

Typeset January 15, 2017 23

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

• In Hoare’s axiomatic basis paper, he doesn’t use any

notation at all.

• In Hehner’s practical theory paper, he writes

(substitute F for V in E)

• Some writers write E(V/F) while others write E(F/V)

• The most common notation is EVF .

• I use E [V : F] because it is hard to mistake for anything

else.

One-point laws

The substitution notation lets us express some useful

laws called “one-point laws”.

Consider (V = F) ⇒ E where V is a variable and E and

F are expressions. If V �= F then the value of E doesn’t

matter, the implication will be true regardless of the value

of E .

In the case of V = F , we need only worry about the

value of E under the assumption that V = F .

The same reasoning applies to an expression

(V = F) ∧ E .

The one point laws can be expressed as:

((V = F)⇒ E) = ((V = F)⇒ E [V : F])

and

((V = F) ∧ E) = ((V = F) ∧ E [V : F])

Examples:

• x = y+1∧z = 2x is the same as x = y+1∧z = 2 (y + 1)

Typeset January 15, 2017 24

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

• x = y + 1 ⇒ z = 2x is the same as x = y + 1 ⇒ z =
2 (y + 1)

The Quantifiers ∀ and ∃

Suppose that S is a finite set, for example {0, 1, 2, 3}, and

A is a boolean expression then we write

∀x ∈ S · A

mean

A[x : 0] ∧A[x : 1] ∧A[x : 2] ∧A[x : 3]

and we write

∃x ∈ S · B
to mean

B[x : 0] ∨ B[x : 1] ∨ B[x : 2] ∨ B[x : 3]

just as we would write
3∑

x=0

E

to mean

E [x : 0] + E [x : 1] + E [x : 2] + E [x : 3]

where E is some numerical expression.

The quantifier ∀ is pronounced “for all”.

The quantifier ∃ is pronounced “there exists a”.

As long as the set S is finite, ∀ and ∃ are convenient

notations, but not very interesting, as they don’t allow us

to do any thing new.

But, if we allow S to be an infinite set, then we have

something very interesting.

Typeset January 15, 2017 25

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

For example consider the set N = {0, 1, 2, ...} then

(∀x ∈ N · A) = A[x : 0] ∧A[x : 1] ∧A[x : 2] ∧ · · ·

and

(∃x ∈ N · A) = A[x : 0] ∨A[x : 1] ∨A[x : 2] ∨ · · ·

In general

• ∀x ∈ S · A is false if A[x : y] is false for at least one

value y ∈ S, otherwise it is true.

• ∃x ∈ S · A is true if A[x : y] is true for at least one

value y ∈ S, otherwise it is false.

Some examples:

• All flavours of ice-cream are good:

∀f ∈ F · good(iceCream(f))

where F is the set of all flavours of ice-cream,

iceCream is a function mapping a flavour to a variety of

ice-cream, and good is a “predicate” (boolean function)

indicating a variety is good.

• Some people like peanut butter:

∃p ∈ P · like(p, peanutButter)

where P is the set of all people and like is a predicate

indicating that its first argument likes its second

argument.

• The Q output is always equal to the D input of the

previous cycle:

∀t ∈ N ·Q(t + 1) = D(t)

where Q and D indicate the values of Q and D in

a given cycle. We use N as a time domain, as is

Typeset January 15, 2017 26

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

appropriate for discrete time systems.

• The system will be in the initial state within 5 seconds

of the reset button being depressed:

∀t ∈ R+ ·reset(t)⇒ (∃u ∈ R+ · t ≤ u ≤ t+5 s∧ initial(u))

where reset is a predicate indicating the reset button

is depressed and initial indicates that the system is in

its initial state. Here I have used R+ = {x ∈ R | x ≥ 0}
to model time, as is appropriate for real-time systems.

Relationship to set theory Recall: The notation

{x ∈ S | A} means the subset of S with elements x such

that A is true.

We can understand ∀ and ∃ in terms of set notation:

(∀x ∈ S · A) = ({x ∈ S | A} = S)

(∃x ∈ S · A) = ({x ∈ S | A} �= ∅)

Therefore

∀x ∈ S · A ∃x ∈ S · A

∅ = {x ∈ S | A} = S true false

∅ = {x ∈ S | A} ⊂ S false false

∅ ⊂ {x ∈ S | A} ⊂ S false true

∅ ⊂ {x ∈ S | A} = S true true

Recall: The notation {x ∈ S · E} means the set of all

values of expression E [x : y] where y is an element of S.

We can understand ∀ and ∃ in as follows

(∀x ∈ S · A) = (false /∈ {x ∈ S · A})

(∃x ∈ S · A) = (true ∈ {x ∈ S · A})

Typeset January 15, 2017 27

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

Since A is boolean, the set {x ∈ S · A} can have four

values (if well defined)

{x ∈ S · A} ∀x ∈ S · A ∃x ∈ S · A

∅ true false

{false} false false

{true} true true

{false, true} false true

Laws

There are a number of laws of predicate calculus which

are useful to know.

These are some.

Identity laws:

(∀x ∈ S · true) = true

(∃x ∈ S · false) = false

(∀x ∈ S · false) = false, provided S �= ∅

(∃x ∈ S · true) = true, provided S �= ∅

(∀x ∈ ∅ · A) = true

(∃x ∈ ∅ · A) = false

Change of variable: Provided y does not occur free in A,

(∀x ∈ N · A) = (∀y ∈ N · A[x : y])

(∃x ∈ N · A) = (∃y ∈ N · A[x : y])

De Morgan’s laws

(∀x ∈ S · A) = ¬(∃x ∈ S · ¬A)

(∃x ∈ S · A) = ¬(∀x ∈ S · ¬A)

Typeset January 15, 2017 28

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

Example: “It rained every day”, ∀d ∈ Day · rain(d), is

the same as “There was no day when it didn’t rain”,

¬ (∃d ∈ Day · ¬rain(d)).

Domain splitting

(∀x ∈ S ∪ T · A) = (∀x ∈ S · A) ∧ (∀x ∈ T · A)

(∃x ∈ S ∪ T · A) = (∃x ∈ S · A) ∨ (∃x ∈ T · A)

Splitting

(∀x ∈ S · A ∧ B) = (∀x ∈ S · A) ∧ (∀x ∈ S · B)

(∃x ∈ S · A ∨ B) = (∃x ∈ S · A) ∨ (∃x ∈ S · B)

Trading

(∀x ∈ S · A ⇒ B) = (∀x ∈ {x ∈ S | A} · B)

(∃x ∈ S · A ∧ B) = (∃x ∈ {x ∈ S | A} · B)

One-point laws: Provided x does not appear free in F
and that F ∈ S,

(∀x ∈ S · (x = F)⇒ A) = A[x : F]

(∃x ∈ S · (x = F) ∧A) = A[x : F]

Commutative: Provided x is not free in T and y is not

free in S,

(∀x ∈ S · ∀y ∈ T · A) = (∀y ∈ T · ∀x ∈ S · A)

(∃x ∈ S · ∃y ∈ T · A) = (∃y ∈ T · ∃x ∈ S · A)

Distributive laws: Provided x is not free in A

A ∧ (∃x ∈ S · B) = (∃x ∈ S · A ∧ B)

A ∨ (∀x ∈ S · B) = (∀x ∈ S · A ∨ B)

(A ⇒ (∀x ∈ S · B)) = (∀x ∈ S · A ⇒ B)

Typeset January 15, 2017 29

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

Distributive laws: Provided S �= ∅ and x is not free in A

(A ∧ (∀x ∈ S · B)) = (∀x ∈ S · A ∧ B)

(A ∨ (∃x ∈ S · B)) = (∃x ∈ S · A ∨ B)

(A ⇒ (∃x ∈ S · B)) = (∃x ∈ S · A ⇒ B)

Typeset January 15, 2017 30

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

Precedence and associativity

As you know, mathematics uses “precedence

conventions” to reduce the need for parentheses.

For example we all know that

w × x + y × z

means

(w × x) + (y × z)
rather than

w × (x + y)× z
as × has “higher” precedence than +.

Furthermore we know that

a− b + c means (a− b) + c

rather than a− (b + c) as − and + are “left associative”.

Some operators are associative meaning it doesn’t

matter how we add parentheses. E.g.

((a ∧ b) ∧ c) = (a ∧ b ∧ c) = (a ∧ (b ∧ c))

On the other hand

a ≤ b < c means (a ≤ b) ∧ (b < c)

and we say that ≤, <, =, etc are “chaining”

Typeset January 15, 2017 31

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

The following table shows many of the operators used in

the course in order of precedence (highest to lowest)

x(y) LA

−x ¬x
x× y x/y LA

x + y x− y LA

∩ A

∪ A

x = y x ≤ y x < y x ∈ y Ch

x ∧ y A

x ∨ y A

x⇒ y NA x⇔ y x� y A

x : y NA

if B then x else y while B do x
; A

) Ch

∀v ∈ S · x ∃v ∈ S · x

where
LA Left associative

RA Right associative

A Associative

NA Nonassociative

Ch Chaining

The low precedence of the quantifiers means that

the scope of a quantified variable extends to the right

to the end of the formula, unless there is explicit

parenthesization or punctuation to stop it. I recommend

putting quantifications in parentheses except when there

is no possible confusion.
Typeset January 15, 2017 32

Advanced Computing Concepts for Engineering, 2011. Slide Set bg-1. Mathematical Preliminaries. c© Theodore Norvell

That ∧ has higher precedence than ∨ is conventional,

but I recommend using extra parentheses, e.g. to write

p ∧ q ∨ r as (p ∧ q) ∨ r

Typeset January 15, 2017 33

