
OO Software Engineering Assignment 1.

Engr 9859, 2013

Due Sept 23 @ 11:00PM.

For each question you will be marked on programming style as well as cor-
rectness. To see my opinion about what constitutes good programming style
see

http://www.engr.mun.ca/~theo/Courses/ds/pub/style.pdf

In short:

• All .java files must be professionally commented; in particular, each file
should contain a comment header that gives your name and student num-
ber, and each class and subroutine should have a comment at the start of
it. I encourage you to use the “javadoc” conventions for comments.

• If you use code, a data structure, or an algorithm you did not write or
invent, give a citation for the source of the code, data structure or algo-
rithm.

• Code and comments must be consistently indented; tab stops should be
set every 4 characters.

• Names must be chosen carefully and spelled correctly. (Use names starting
with lower case letters for variables and methods; use names starting with
upper case letters for classes and interfaces.)

• Use subroutines appropriately to avoid redundant coding.

• Keep control structures and data structures simple.

All classes must be tested by you prior to being submitted. You are welcome
to share test code with each other.
The assignment is to be done alone. Each file should contain the following

declaration in comments near the top. “This file was prepared by [your name
here]. It was completed by me alone.”. If you obtained help in doing the
assignment, do not include this declaration, but rather an explanation of the
nature of any help that you received in doing the assignment.
Q0. This question continues the work on Huffman coding that was started in

assignment 0. The idea is to build a tree structure representing the frequencies
of various symbols. In this question, you will design and implement the classes
that we will need to represent trees. In the next question, you will implement
the algorithm to build the trees. A tree looks like this:

1

Folders/courses/cef/2013/huffman.png

You can see there are two kinds of nodes in this tree: leaf nodes (drawn
as squares) and branch nodes (drawn as ovals). Branch nodes are said to have
two child nodes. One node in the tree does not have a parent; it is called the
root; all others have one parent.
A tree represents a binary code as follows. Each leaf node can be represented

by a sequence of directions, left or right, from the root (top node). We take
left=true and right=false, so the code in the example is

Code point Code
’a’ [true, true]
’w’ [true, false]
’z’ [false,true]
’ ’ [false, false, true]
’2’ [false, false, false]

We will start with an interface

package huffman ;
public interface TreeNode {

int getFrequency() ;

BranchNode getParent() ;

void setParent(BranchNode parent) ;

char decode(BooleanSource boolSource) ;

void encode(BooleanSink boolSink) ;
}

You are to design and code two classes that implement this interface: The
first represents leaf nodes and is called LeafNode. The second represents branch
nodes and is called BranchNode.

2

The constructors are as follows

public LeafNode(char codePoint, int frequency) {...}
public BranchNode(TreeNode left, TreeNode right) { ... }

The left and right parameters represent the two “children” of the branch
node – and so must not be null. When a branch node is constructed, it should
set the parent of its two children to be itself. The following should be invariants

• Each branch node will have two children.

• Each tree node will have 0 or 1 parents.

• If a tree node n has a parent, it is a BranchNode and n should be a child
of its parent.

• If a tree node has no parent, getParent should return null.

The two classes implement the methods of the TreeNode interface as follows.

• getFrequency. The leaf node returns the frequency given in its constructor
argument. The branch node returns the sum of the frequencies of its two
children.

• setParent. Changes the parent.

• getParent. The argument to the most recent call to setParent. If setParent
has never been called, then getParent returns null, indicating the node is
a root..

• decode. The boolSource parameter represents a sequence of boolean values.
decode uses this sequence to go down the tree to find a symbol. For
example if the source is

[false, false, true, true, false]

then the result of decode from the root of the example tree would be 3.
Furthermore the first 3 items of the source would be removed so the source
would then be

[true, false]

You can implement decode as follows: A leaf node returns its symbol. A
branch node removes one boolean from the sequence and then requests
either its left or right child to decode.

• encode. The boolSink parameter represents a sequence of boolean values
which can be added to (on the right). When encode is called, the sequence
of directions from the root of the tree down to this node is added to the
sequence. For example, if we start with an empty sequence and call encode

3

on the leaf node for code point 2 in the example tree, then first false and
then true will be added to the sequence to give

[false, true]

You can implement encode as follows: A node with no parent does nothing.
A node with a parent requests its parent to encode itself, and then appends
a true or false to the sequence depending on whether it is the left child or
the right child of its parent.

In addition to the methods in the TreeNode interface, BranchNode should
implement the following methods

public TreeNode getLeft() {...}
public TreeNode getRight() {...}

Which return references to the two children.
I will supply you with ‘mock’ implementations1 of BooleanSource and BooleanSink

and a few JUnit test cases.
Submit LeafNode.java and BranchNode.java.
Q1 Making a tree. Design and implement a class Tree in package huffman.

Tree should have a constructor

public Tree(int[] frequencies, char[] symbols)

The frequencies array is a sequence of symbol frequencies. The symbols array
indicates the corresponding symbol. I.e. frequencies[i] will be the frequency of
character symbol[i], for each i. As a precondition, you should assume the two
arrays have the same length and that all frequencies are non-negative. The
frequencies and symbol arrays could be as follows:

symbols frequencies
’z’ 17
’w’ 16
’a’ 15
’2’ 10
’ ’ 7

Frequencies array will be ordered from largest to smallest.
This constructor should:

• build an array of LeafNodes of length equal to 1 plus the maximum value
in the symbol array converted to an int. (In the example the maximum
character is ’d’, so the size of the array would be (int)’d’ + 1.Each LeafNode
will have a frequency from the frequency array and a code point equal to
the position in the array. In the example, item (int)’d’ of the array would
be a reference to a LeafNode that has ’d’ as its code point and 1 as its

1A mock class is an implementation of an interface used in testing other classes.

4

Folders/courses/cef/2013/huffman1.png

frequency. All other items of the array should be null. When the frequency
is 0, no leaf node should be created.

• The constructor should then build a tree over these leaves according to
Huffman coding (see below). The constructor should store references to
the root node of the tree and to the array in private fields of Tree for later
use.

The Tree class should also have methods

public void encode(char symbol, BooleanSink sink)

and

public int decode(BooleanSource source)

The encode method will find the LeafNode corresponding to the symbol and
then append the symbol’s code to the sink object. As a precondition, the symbol
must be one that was in the constructor’s symbols argument. I.e., it must be
one that has a LeafNode in the array.
The decode method will decode the next code point from the BooleanSource

using the tree and return the code point. You may assume, as a precondition,
that the source can supply enough bits.
Huffman coding.

You can find many discussions of Huffman’s method of building the tree
either on the web or in the library. For example the Wikipedia has a discussion.
Be sure to cite any sources you use. In short here is the method:

Keep a sequence of nodes ordered by frequency. Initially the

5

sequence contains just the leaf nodes. When the sequence has only
one node in it, we stop; that node is the root. As long as there
are two or more nodes in the sequence, we remove the two with the
lowest frequencies, build a branch node above them, and then add
the branch node to the sequence.

You are welcome to use classes and interfaces from the Java standard library.
For example, you might use the java.util.ArrayList class, java.util.LinkedList, or
the java.util.PriorityQueue classes. Using the java.util.PriorityQueue class gives an
easy way to achieve O(N logN) time to build the tree, where N is the length
of the frequency array. A way to achieve O(N) time is use two FIFO (first in,
first out) queues, one for leaves and one for branches;2 since branch nodes are
built in order of increasing frequency, you can always add new branch nodes to
the back of the branch node queue.
Huffman coding guarantees that the code is a most efficient code possible in

the sense that it minimizes
∑

i∈{0,..N}

freq(i)× |code(i)|

where freq(i) is the frequency of code point i and code(i) is the length of the
code word assigned to code point i.
Submit Tree.java.

2 java.util.LinkedList implements a FIFO queue for the branches.

6

