Midterm. Engi 9869

Theodore Norvell ©

2008

Total marks: 35 Name: Student #: Q0 [10] Complete the following proof outline validly. Keep it as simple as possible.

a = b = false

Global Inv: со ## _____ a, w := true, 13

_ $\langle \mathbf{await}(b) \rangle$

____ x := f(w, y)

//

_____ b, y := true, 42

____ $\langle \mathbf{await}(a) \rangle$

 $## _ _ _ g(w, y)$

oc

 $\#\# x = f(13, 42) \land z = g(13, 42)$

Name: _

Q1 [10] Future. A "future" is an object that either represents a value, or will represent a value in the future. Typically a future is returned from a function that may spin off a new thread to compute the value. For example

```
\label{eq:future} Future \ future = someObj.someMethod() \ ;
```

Object value = future.get();

The thread getting the value may have to wait until the value has been put. Using Java notation **design and implement** a Future class. It should support the following methods.

public void put(Object pValue) ;
public Object get() ;

You may use my Signal-and-Wait monitor package, if you want.

Student #: __

Q2 [5]. Remote Procedures.

Name: _

In what ways do remote procedure calls differ from ordinary (local) procedure calls?

Q3 [10] Bag of tasks product. Consider the problem of computing the 'product' of all items in an array a[0..N-1].

$$a[0] \otimes a[1] \otimes \ldots \otimes a[N-1]$$

We can assume that \otimes is some associative operator, which may be time consuming to compute. For simplicity assume $N = 2^n$ where n is an integer.

We can make use of a tree structure, filling in an array A[0..n, 0..N - 1]. So that A[0, j] = a[j] and $A[i, j] = A[i, 2 \times j] \otimes A[i, 2 \times j + 1]$, where $0 < i \le n$ and $0 \le j \le 2^{n-i}$. This is illustrated for N = 8, n = 3:

А	0	1	2	3	4	5	6	7
0	a[0]	a[1]	a[2]	a[3]	a[4]	a[5]	a[6]	a[7]
1	$A[0,0]\otimes A[0,1]$	$A[0,2]\otimes A[0,3]$	$A[0,4] \otimes A[0,5]$	$A[0,6]\otimes A[0,7]$				
2	$A[1,0]\otimes A[1,1]$	$A[1,2] \otimes A[1,3]$						
3	$A[2,0] \otimes A[2,1]$							

Design a bag of tasks algorithm in which each task consists of filling in one element of A. In case it helps, let's define the following functions to help navigate the tree

sibling((i, j))	=	(i, j + 1), if j is even and $i < n$
sibling((i, j))	=	(i, j - 1), if j is odd and $i < n$
parent((i, j))	=	$(i+1, \lfloor j \div 2 \rfloor)$, if $i < n$
chidren((i, j))	=	$\{(i-1,2j), (i-1,2j+1)\}, \text{ if } i > 0$

Use the course's design notation. Feel free to declare any auxiliary data structures you would like.

Hint: Ensure that each 'parent' task goes in the bag only after both of its child tasks have

Name: _____

Student #: _____

filled in their elements of the ${\cal A}$ array.