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Application: Public Key Cryptography
Suppose I wanted people to send me secret messages
by snail mail
• Method 0.
∗ I send a padlock, that only I have the key to, to
everyone who might want to send me a message.
∗ They send me the message in a locked box.
∗ Problem 0. I need to know in advance who wants to
send me a message
∗ Problem 1. Any one with one of my padlocks can
inspect it to discover the key.
∗ Problem 2. “person in the middle” attacks.

• Method 1.
∗ I design a key.
∗ Then I design a padlock only opened by that key
∗ I publish the design of the lock on my web-site
∗ Inspecting the design, does not reveal the key!
∗ Now anyone can send me a secret message
∗With public key cryptography, we do the mathemati-
cal equivalent
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Public Key Cryptography
Can we create a way to encrypt information such that:
• anyone can encrypt a message
• only we can decrypt the message?
In one sense the answer is no
• Anyone can encrypt all possible message and see
which encrypted version matches the one sent

• But, if the number of possible messages is large, it is
impractical

Public key cryptography
• Encryption using publicly available information is fast
• Decryption using publicly available information is
possible, but very very very slow

• There is a second, fast, method of decryption that
relies on secret information
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The RSA Algorithm
• I pick two different large primes p and q, each roughly
150 decimal digits long

• Let n = p · q. Note n is about 300 decimal digits long
• I pick two integers e and d such that

0 < e, d < (p− 1)(q − 1)
and ed ≡ 1 (mod (p− 1)(q − 1))

• Claim: If 0 ≤ a < n then (aemodn)dmodn = a
∗ To be proved later

• The numbers e and n are made public
• I keep d, p, and q secret.
• To encrypt a number a with 0 ≤ a < n compute
b = aemodn. Transmit b to me.

• To decrypt b, I compute bdmodn. This will equal a.
• To send a sequence of bits: Each segment of blog2 nc
bits encodes a number between 0 and n − 1. So we
split the sequence into segments and encrypt each
segment.
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Why is this secure?
• No one currently knows of a fast enough way to
compute a from b, e, and n, without factoring n

• No one currently knows of a fast enough way to factor
large numbers such as n

Why is it practical?
• There are plenty of primes of about 150 digits
• Finding primes of this size is not unreasonably hard
• (In practice the numbers used are probably prime with
a very, very, very high probability)

• Finding a suitable d from e is reasonably fast
• All the encryption and decryption operations can be
done reasonably fast

Why does it work?
Before we can prove that (aemodn)dmodn = a, we need
two theorems.
• The Chinese Remainder Theorem (CRT)
• Fermat’s Little Theorem.
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Chinese Remainder Theorem
Suppose we have two digital clocks displaying minutes.
• One repeats every 5 minutes: 0, 1, 2, 3, 4, 0, 1, ...
• The other repeats every 12 minutes:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, ...

• So, assuming perfect synchronizatio, we see
(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (0, 5), (1, 6), (2, 7), (3, 8), ...

• This sequence will repeat after 5 · 12 minutes. The
sequence is

(0mod 5, 0mod 12), (1mod 5, 1mod 12), ...

• Q. For what pairs of numbers m , n will we get m · n
different pairs?

• A. When m and n have no common factor. I.e. when
gcd(m,n) = 1.

• If we know the two remainders (imodm, imodn), we
can figure out the number of minutes i modulo m · n

• If gcd(m,n) = 1 and a ≡ b (modm) and a ≡ b (modn)
then a ≡ b (modmn)

• This is the Chinese Remainder Theorem
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Fermat’s Little Theorem
Consider the sequence anmod p for some prime p and
0 < a < p and n = 0, 1, 2, ...
• For example take p = 11 and a = 2 then we get

20mod 11, 21mod 11, 22mod 11, ...

= 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 2, 4, ...

We get a sequence that starts with 1 and repeats after
10 numbers

• Consider p = 11 & a = 3 and also p = 11 & a = 10,

1, 3, 9, 5, 4, 1, 3, ... and 1, 10, 1, 10, ...
We get sequences with periods 5 and 2 respectively

• In fact for any a (0 < a < p) the period will be a divisor
of p− 1. [Can you prove this?]

• In all three examples, items 0, 10, 20 etc. are 1
• In general, items 0, p− 1, 2(p− 1) etc. will be 1:

ap−1mod p = 1
•We can generalize this result to any a that p does not
divide

• This is Fermat’s Little Theorem
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Back to RSA
We need to show (aemodn)dmodn = a

• where n = pq,
• p and q are prime
• e and d are such that 0 < e, d < (p − 1)(q − 1) and
ed ≡ 1 (mod (p− 1)(q − 1))

Since (imodn)(jmodn)modn = (i · j)modn we really
need to show

aed ≡ a (modn)
By the CRT we need only show aed ≡ a (mod p) and
aed ≡ a (mod q)

• First we show aed ≡ a (mod p)
∗ If p divides a, then p also divides aed (since ed > 0);
thus the congruence simplifies to

0 ≡ 0 (mod p) ,
which is obviously true.
∗ Now suppose p does not divide a.

Since ed ≡ 1 (mod (p− 1)(q − 1)), there must be
some k such that k(p− 1)(q − 1) = ed− 1.
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Let k be such that k(p− 1)(q − 1) + 1 = ed.
aed

= ak(p−1)(q−1)+1

= a ·
³
ak(q−1)

´p−1
Since p does not divide a, it also does not divide
ak(q−1), so we can apply Fermat’s little theorem.
Continuing:

aed

= a ·
³
ak(q−1)

´p−1
≡ a · 1 (mod p) by Fermat’s little theorem
= a

Thus aed ≡ a (mod p)

• Similarly aed ≡ a (mod q).
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