Application: The correctness of iterative statements

Suppose that

- S is a statement in a programming language
- P and Q are boolean expressions involving program variables.

We write $\{P\}S\{Q\}$ to mean that

- ullet If statement S starts in a state where P holds
- ullet then it can only terminate in a state where Q holds.

(Such a triple is called a Hoare triple after C.A.R. Hoare. P is called the "precondition" and Q is called the "postcondition".)

For example the following are valid Hoare triples

- $\{i \leq 100 \land j \leq 100\}$ i:=i+j $\{i \leq 200\}$ (I am using the notation "x:=E" for assignment of expression E to variable x. In C/C++ we would write "x=E;")
- $\{i = 4\}$ $i := i + 1; i := i \times 2 \{i = 10\}$

•
$$\{B^A = z \times y^x \wedge x > 0\}$$

 $x := x - 1; z := z \times y$
 $\{B^A = z \times y^x\}$

We can also use variables that do not occur in the program state. So

$$\{i=K\}\ i:=i+1; i:=i\times 2\ \{i=2\times K+2\}$$
 is a valid Hoare triple.¹

Now consider the following triple with integer x, y, z, A, B

$$\{x = A \land x \ge 0 \land y = B\}$$

 $z := 1;$
while /*L*/ $x > 0$ **do** $(x := x - 1; z := z \times y)$
 $\{z = B^A\}$

We can see that the triple is valid as follows:

- Let I be " $B^A = z \times y^x \wedge x \ge 0$ "
- Let P(n) mean I holds the n^{th} time point L is reached.

And you can extend this to a sequence of assingments. E.g. $\{P\}x:=E;y:=F\{Q\}$ iff

$$P \rightarrow (Q[y:=F])[x:=E]$$
 for all values of all variables

By the way, a Hoare triple $\{P\}x:=E\{Q\}$ is valid iff $P\to Q[x:=E] \text{ for all values of all variables}$

- We can show by simple induction that P(n) is true for all $n \in \{1, 2, 3, ...\}$.
- Base step. P(1) is true because when we first reach L it is right after the first assignment to z and so $x = A \land x > 0 \land y = B \land z = 1$.
- ullet Inductive step. P(k) is the ind. hyp. W.T.P P(k+1)
 - * To show the inductive step, we first show the validity of

$${I \land x > 0} \ x := x - 1; z := z \times y \{I\}$$

- * The $(k+1)^{\text{th}}$ time point L is reached it is right after k^{th} iteration of the loop body.
- * By the ind. hyp. I holds at the start of the k^{th} iteration of the loop body; so does x > 0.
- * So by

$${I \land x > 0} \ x := x - 1; z := z \times y \{I\}$$

I holds at the end of the $k^{\rm th}$ iteration of the loop body and hence the $(k+1)^{\rm th}$ time point L is reached.

- If the loop is ever exited, it will be the case that I holds and also $x \le 0$ holds.
- ullet From $I \wedge x \leq 0$ we can deduce x = 0 and hence $z = B^A$.

We can replace the loop body by any statement S such that

$$\{I \land x > 0\} S \{I\}$$

For example we can replace the loop body by if 2|x then $(x:=x/2;y:=y^2)$ else $(x:=x-1;z:=z\times y)$

Hoare's rule of iteration

We can generalize this technique to any loop $\mathbf{while}\ E\ \mathbf{do}\ S$ provided

- E does not affect the state.
- ullet there is no way to exit the loop other than by E evaluating to false.

The general rule is

- If $\{I \wedge E\}$ S $\{I\}$ is valid
- then $\{I\}$ while E do S $\{I \land \neg E\}$ is valid

Application: The correctness of recursive subroutines

Consider the following subroutine in C++

```
int pow( int x, int y) {
    if( x==0 )
        return 1 ;
    else if( x % 2 != 0 )
        // x is odd
        return y * pow(x-1,y) ;
    else // x is even and not 0
        return pow(x/2,y*y) ;
}
```

Such a subroutine is called 'recursive' as it contains calls to itself.

What does this routine do?

Let P(n) mean "for any y, pow(n, y) returns y^n ".

Now we show for all $n \in \mathbb{N}$, P(n) by $\emph{complete}$ induction.

Base Step:

• Any call 'pow(0, y)' returns 1, which is y^0 .

Inductive Step:

- Let k be any natural greater than 0
- Assume as the ind. hyp. that for all naturals j less than k, P(j).
- Let y be any integer
- Case k is odd
 - st By the ind hyp 'pow(k-1,y)' returns y^{k-1}
 - * The value returned by 'pow(k,y)' is $y \times pow(k-1,y)$ $y \times pow(k-1,y) = y \times y^{k-1} = y^k$
- Case k is even.
 - * By the ind hyp 'pow $(k/2, y^2)$ ' returns $(y^2)^{k/2}$
 - * The value returned by 'pow(k,y)' is $pow(k/2,y^2)$

$$pow(k/2, y^2) = (y^2)^{k/2} = y^k$$