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Application: AVL trees and the golden
ratio
AVL trees are used for storing information in an efÞcient
manner.
� We will see exactly how in the data structures course.
� This slide set takes a look at how high an AVL tree of

a given size can be.

The golden ratio

The golden ratio is an irrational number φ = 1+
√
5

2
∼= 1.618

with many interesting properties. Among them
� φ− 1 = 1/φ
� φ = 1 + 1

1+ 1

1+ 1...1
� φ turns up in many geometric Þgures including

pentagrams and dodecahedra
� It is the ratio, in the limit, of successive members of

the Fibonacci sequence
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Binary trees
A binary tree is either
� The empty binary tree, for which I�ll write °
� Or a point (called a node) connected to two smaller

binary trees (called its children)
� The children must not share any nodes.

An empty
binary tree

A nonempty
binary tree

Another
nonempty
binary tree
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The height and size of a binary tree
The size of a binary tree is the number of nodes it has.
The height of a binary tree is number of levels of nodes
it has

size is 5

height is 3

Note that ° has height 0 and size 0.
Clearly a binary tree of size n can have a height of up to
n.
When binary trees are used to store data:
� The amount of information stored is proportional to

size of tree
� The time to access data is proportional to the height
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AVL trees
AVL trees are binary trees with the following restrictions.
� The empty tree is an AVL tree
� A nonempty binary tree is AVL if
∗ the height difference of the children is at most 1,

and
∗ both children are AVL trees

AVL
Not AVL Not AVL
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The question
We wish to access large amounts of data quickly.
� Remember amount of information is proportional to

size of tree
� and access time is proportional to the height of the

tree.

So the question is how high can an AVL tree of a given
size be?
We start by asking a closely related question:
� How small can an AVL tree of a given height be?
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How small can an AVL tree of a given
height be?
Let�s make a table with the smallest AVL tree of each
height
(empty trees are implied)

Height Smallest tree Size

0

1

2

3

4

5

0

1

2

4

7

12
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The minsize function
In the table, each tree (of height h > 1) has, as children,
smallest trees of heights h− 2 and h− 1
So we have
minsize(0) = 0

minsize(1) = 1

minsize(h) = minsize(h− 1) + minsize(h− 2) + 1, for h ≥ 2
Note the recurrence is not homogeneous.
Try a few values

0, 1, 2, 4, 7, 12, 20, 33, 54

Compare with the Fibonacci sequence
1, 1, 2, 3, 5, 8, 13, 21, 34, 55

We Þnd
minsize(h) = Þb(h + 1)− 1

where
Þb(0) = 1

Þb(1) = 1

Þb(n) = Þb(n− 1) + Þb(n− 2), for n ≥ 2
We can prove this by (complete induction).
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Since Þb is deÞned by a linear homogeneous recurrence
relation of degree 2 we can solve it

Þb(n) =
1√
5
× φn+1 − 1√

5
× (−1

φ
)n+1 for all n ∈ N

where

φ =
1 +

√
5

2
Consider 1√

5
× φn+1 − 1√

5
× (−1φ )n+1 for n ∈ R and n ≥ 0.

The Þrst term is real, the second is complex.
As n gets big, the complex term becomes small.
So we get minsize(h) ∼= 1√

5
× φh+2 − 1

0

2

4

6

8

10

12

size

1 2 3 4 5height

minsize(h) dots 1√
5
× φh+2 − 1 line
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The maximum height per given size
Height 0 1 2 3 4 5
Min size 0 1 2 4 7 12

Let h0 be the height of a tree of size s0. We know that for
all h,

h0 ≥ h→ s0 ≥ minsize(h)
Contrapositively: For all h,

s0 < minsize(h)→ h0 < h
Size 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Max height 0 1 2 2 3 3 3 4 4 4 4 4 5 5 5

Note that for s such that minsize(h− 1) < s ≤ minsize(h)
maxheight(s) = h

maxheight(s) is approximately an inverse of minsize(h)
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So invert 1√
5
× φh+2 − 1
s =

1√
5
× φh+2 − 1

⇔
√
5 (s + 1) = φh+2

⇔ logφ
√
5 (s + 1) = h + 2

⇔ logφ
√
5 (s + 1)− 2 = h

⇔ logφ 2× log2(s + 1) + logφ
√
5− 2 = h

so maxheight(s) ∼= 1.44× log2(s + 1)− 0.3
For example

maxheight(106) ∼= 29

maxheight(109) ∼= 43

maxheight(1012) ∼= 58

This means large amounts of data can be accessed in a
small amount of time, if we store the data in AVL trees.
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Graphing maxheight

0

1

2

3

4

5

6

h

2 4 6 8 10 12 14 16 18 20s

maxheight(s) dots 1.44× log2(s + 1)− 0.3 line
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