Application: AVL trees and the golden ratio

AVL trees are used for storing information in an efficient manner.

- We will see exactly how in the data structures course.
- This slide set takes a look at how high an AVL tree of a given size can be.

The golden ratio

The golden ratio is an irrational number $\phi=\frac{1+\sqrt{5}}{2}\cong 1.618$ with many interesting properties. Among them

$$\bullet \phi - 1 = 1/\phi$$

$$\bullet \ \phi = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}}$$

- ullet ϕ turns up in many geometric figures including pentagrams and dodecahedra
- It is the ratio, in the limit, of successive members of the Fibonacci sequence

Binary trees

A binary tree is either

- The empty binary tree, for which I'll write
- Or a point (called a node) connected to two smaller binary trees (called its children)
- The children must not share any nodes.

The height and size of a binary tree

The size of a binary tree is the number of nodes it has.

The **height** of a binary tree is number of levels of nodes it has

Note that \bigcirc has height 0 and size 0.

Clearly a binary tree of size n can have a height of up to n.

When binary trees are used to store data:

- The amount of information stored is proportional to size of tree
- The time to access data is proportional to the height

AVL trees

AVL trees are binary trees with the following restrictions.

- The empty tree is an AVL tree
- A nonempty binary tree is AVL if
 - * the height difference of the children is at most 1, and

* both children are AVL trees

The question

We wish to access large amounts of data quickly.

- Remember amount of information is proportional to size of tree
- and access time is proportional to the height of the tree.

So the question is how high can an AVL tree of a given size be?

We start by asking a closely related question:

How small can an AVL tree of a given height be?

How small can an AVL tree of a given height be?

Let's make a table with the smallest AVL tree of each height

(empty trees are implied)

The minsize function

In the table, each tree (of height h>1) has, as children, smallest trees of heights h-2 and h-1

So we have

$$minsize(0) = 0$$

$$minsize(1) = 1$$

$$minsize(h) = minsize(h-1) + minsize(h-2) + 1$$
, for $h \ge 2$

Note the recurrence is not homogeneous.

Try a few values

Compare with the Fibonacci sequence

We find

$$minsize(h) = fib(h+1) - 1$$

where

$$fib(0) = 1$$

$$fib(1) = 1$$

$$fib(n) = fib(n-1) + fib(n-2)$$
, for $n \ge 2$

We can prove this by (complete induction).

Since fib is defined by a linear homogeneous recurrence relation of degree 2 we can solve it

$$\mathrm{fib}(n) = \frac{1}{\sqrt{5}} \times \phi^{n+1} - \frac{1}{\sqrt{5}} \times (\frac{-1}{\phi})^{n+1} \quad \text{for all } n \in \mathbb{N}$$

where

$$\phi = \frac{1 + \sqrt{5}}{2}$$

 $\phi=\frac{1+\sqrt{5}}{2}$ Consider $\frac{1}{\sqrt{5}}\times\phi^{n+1}-\frac{1}{\sqrt{5}}\times(\frac{-1}{\phi})^{n+1}$ for $n\in\mathbb{R}$ and $n\geq0$.

The first term is real, the second is complex.

As n gets big, the complex term becomes small.

So we get
$$minsize(h) \cong \frac{1}{\sqrt{5}} \times \phi^{h+2} - 1$$

minsize(h) dots

$$\frac{1}{\sqrt{5}} \times \phi^{h+2} - 1$$
 line

The maximum height per given size

Let h' be the height of a tree of size s'. We know that for all h,

$$h' \ge h \to s' \ge \text{minsize}(h)$$

Contrapositively: For all h,

$$s' < \text{minsize}(h) \rightarrow h' < h$$

Note that for s such that $minsize(h-1) < s \le minsize(h)$ maxheight(s) = h

 $\operatorname{maxheight}(s)$ is approximately an inverse of $\operatorname{minsize}(h)$

Discrete Math. for Engineering, 2004. Application slides 5

So invert
$$\frac{1}{\sqrt{5}} \times \phi^{h+2} - 1$$

$$s = \frac{1}{\sqrt{5}} \times \phi^{h+2} - 1$$

$$\Leftrightarrow \sqrt{5}(s+1) = \phi^{h+2}$$

$$\Leftrightarrow \log_{\phi} \sqrt{5}(s+1) = h + 2$$

$$\Leftrightarrow \log_{\phi} \sqrt{5}(s+1) - 2 = h$$

$$\Leftrightarrow \log_{\phi} 2 \times \log_2(s+1) + \log_{\phi} \sqrt{5} - 2 = h$$
so maxheight(s) $\cong 1.44 \times \log_2(s+1) - 0.3$

For example

maxheight(
$$10^6$$
) $\cong 29$
maxheight(10^9) $\cong 43$
maxheight(10^{12}) $\cong 58$

This means large amounts of data can be accessed in a small amount of time, if we store the data in AVL trees.

Graphing maxheight

maxheight(s) dots $1.44 \times \log_2(s+1) - 0.3$ line