## Application: AVL trees and the golden ratio

AVL trees are used for storing information in an efficient manner.

- We will see exactly how in the data structures course.
- This slide set takes a look at how high an AVL tree of a given size can be.


## The golden ratio

The golden ratio is an irrational number $\phi=\frac{1+\sqrt{5}}{2} \cong 1.618$ with many interesting properties. Among them

- $\phi-1=1 / \phi$
- $\phi=1+\frac{1}{1+\frac{1}{1+\frac{1}{\ddots_{1}}}}$
- $\phi$ turns up in many geometric figures including pentagrams and dodecahedra
- It is the ratio, in the limit, of successive members of the Fibonacci sequence


## Binary trees

A binary tree is either

- The empty binary tree, for which l'll write
- Or a point (called a node) connected to two smaller binary trees (called its children)
- The children must not share any nodes.

An empty binary tree


A nonempty binary tree


Another nonempty binary tree

## The height and size of a binary tree

The size of a binary tree is the number of nodes it has.
The height of a binary tree is number of levels of nodes it has

height is 3
size is 5

Note that $\bigcirc$ has height 0 and size 0 .
Clearly a binary tree of size $n$ can have a height of up to $n$.
When binary trees are used to store data:

- The amount of information stored is proportional to size of tree
- The time to access data is proportional to the height


## AVL trees

AVL trees are binary trees with the following restrictions.

- The empty tree is an AVL tree
- A nonempty binary tree is AVL if
* the height difference of the children is at most 1 , and
* both children are AVL trees


AVL


Not AVL


Not AVL

## The question

We wish to access large amounts of data quickly.

- Remember amount of information is proportional to size of tree
- and access time is proportional to the height of the tree.

So the question is how high can an AVL tree of a given size be?
We start by asking a closely related question:

- How small can an AVL tree of a given height be?


## How small can an AVL tree of a given height be?

Let's make a table with the smallest AVL tree of each height
(empty trees are implied)


## The minsize function

In the table, each tree (of height $h>1$ ) has, as children, smallest trees of heights $h-2$ and $h-1$
So we have
$\operatorname{minsize}(0)=0$
$\operatorname{minsize}(1)=1$
$\operatorname{minsize}(h)=\operatorname{minsize}(h-1)+\operatorname{minsize}(h-2)+1$, for $h \geq 2$
Note the recurrence is not homogeneous.
Try a few values

$$
0,1,2,4,7,12,20,33,54
$$

Compare with the Fibonacci sequence

$$
1,1,2,3,5,8,13,21,34,55
$$

We find

$$
\operatorname{minsize}(h)=\operatorname{fib}(h+1)-1
$$

where

$$
\begin{aligned}
\operatorname{fib}(0) & =1 \\
\operatorname{fib}(1) & =1 \\
\operatorname{fib}(n) & =\operatorname{fib}(n-1)+\operatorname{fib}(n-2), \text { for } n \geq 2
\end{aligned}
$$

We can prove this by (complete induction).

Since fib is defined by a linear homogeneous recurrence relation of degree 2 we can solve it

$$
\operatorname{fib}(n)=\frac{1}{\sqrt{5}} \times \phi^{n+1}-\frac{1}{\sqrt{5}} \times\left(\frac{-1}{\phi}\right)^{n+1} \quad \text { for all } n \in \mathbb{N}
$$

where

$$
\phi=\frac{1+\sqrt{5}}{2}
$$

Consider $\frac{1}{\sqrt{5}} \times \phi^{n+1}-\frac{1}{\sqrt{5}} \times\left(\frac{-1}{\phi}\right)^{n+1}$ for $n \in \mathbb{R}$ and $n \geq 0$.
The first term is real, the second is complex.
As $n$ gets big, the complex term becomes small.
So we get $\operatorname{minsize}(h) \cong \frac{1}{\sqrt{5}} \times \phi^{h+2}-1$

$\operatorname{minsize}(h)$ dots $\quad \frac{1}{\sqrt{5}} \times \phi^{h+2}-1$ line

## The maximum height per given size

| Height | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Min size | 0 | 1 | 2 | 4 | 7 | 12 |

Let $h^{\prime}$ be the height of a tree of size $s^{\prime}$. We know that for all $h$,

$$
h^{\prime} \geq h \rightarrow s^{\prime} \geq \operatorname{minsize}(h)
$$

Contrapositively: For all $h$,

$$
s^{\prime}<\operatorname{minsize}(h) \rightarrow h^{\prime}<h
$$

| Size | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Max height | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 |

Note that for $s$ such that minsize $(h-1)<s \leq \operatorname{minsize}(h)$

$$
\operatorname{maxheight}(s)=h
$$

maxheight $(s)$ is approximately an inverse of minsize $(h)$

So invert $\frac{1}{\sqrt{5}} \times \phi^{h+2}-1$

$$
\begin{gathered}
s=\frac{1}{\sqrt{5}} \times \phi^{h+2}-1 \\
\Leftrightarrow \sqrt{5}(s+1)=\phi^{h+2} \\
\Leftrightarrow \log _{\phi} \sqrt{5}(s+1)=h+2 \\
\Leftrightarrow \log _{\phi} \sqrt{5}(s+1)-2=h \\
\Leftrightarrow \log _{\phi} 2 \times \log _{2}(s+1)+\log _{\phi} \sqrt{5}-2=h \\
\text { so maxheight }(s) \cong 1.44 \times \log _{2}(s+1)-0.3
\end{gathered}
$$

For example

$$
\begin{aligned}
\operatorname{maxheight}\left(10^{6}\right) & \cong 29 \\
\operatorname{maxheight}\left(10^{9}\right) & \cong 43 \\
\operatorname{maxheight}\left(10^{12}\right) & \cong 58
\end{aligned}
$$

This means large amounts of data can be accessed in a small amount of time, if we store the data in AVL trees.

## Graphing maxheight


maxheight $(s)$ dots $1.44 \times \log _{2}(s+1)-0.3$ line

