
Discrete Math. for Engineering, 2004. Notes 3. Theodore Norvell, Memorial University

Predicate logic
(Reading Gossett Section 2.6)

Predicates and Boolean Expressions
Recall that a statement or proposition is an assertion
that may be labelled true or false
And that statements may depend on one or more
variables.
Statements are also called boolean expressions.
Examples:
• m = 3× n

• i < 0
Predicate. A predicate is a function that results in a
boolean value.
Examples: P and Q defined as follows are predicates
• P (m,n) , (m = 3× n)

• Q(i) , (i < 0)

Typeset September 29, 2004 1

Discrete Math. for Engineering, 2004. Notes 3. Theodore Norvell, Memorial University

Predicates and boolean expressions are often used in
specification of systems or other objects. In this case,
the variables represent observable quantities: E.g.
• V = 100 · I
∗ expresses a relationship between quantities identi-
fied as V and I

• q(t + 1) = d(t), for all t ∈ N.
∗ expresses a relationship between functions identi-
fied as q and d

• 20 ≤ h ≤ 21 ∧ 10 ≤ w ≤ 11 ∧ 5 ≤ d ≤ 5.5
∗ expresses constraints on quantities identified as h,
w, and d

Note that since the names connect the statements with
physical quantities, the names are important.

Typeset September 29, 2004 2

Discrete Math. for Engineering, 2004. Notes 3. Theodore Norvell, Memorial University

Quantifiers
Informal definition

Review: Summation notationX
j∈S

f (j)

means (informally)
f(s0) + f(s1) + ...

where S = {s0, s1, ...}.
A common case is where S is of the form {m,m+1, ..., n},
in which case we write

nX
j=m

f (j)

For example, it is a theorem that X
j∈{1,...,n}

j

 =
n(n + 1)

2

Typeset September 29, 2004 3

Discrete Math. for Engineering, 2004. Notes 3. Theodore Norvell, Memorial University

New stuff. What if the operation is not + but something
else?
• If the operation is × then we use the notationY

j∈S
f(j)

 = f (s0)× f (s1)× ...

• If the operation is ∧, then we use the notation
(∀j ∈ S, f (j)) = f(s0) ∧ f (s1) ∧

pronounced “for all”. We call this “universal quantifi-
cation”. Of course f (si) should be ∈ {F, T} in each
case.

• If the operation is ∨, then we use the notation
(∃j ∈ S, f (j)) = f(s0) ∨ f (s1) ∨

pronounced “there exists a”. We call this “existential
quantification”

Typeset September 29, 2004 4

Discrete Math. for Engineering, 2004. Notes 3. Theodore Norvell, Memorial University

Examples
• “i is a multiple of 3”
∗We can rephrase this as
“there exists an integer, k, such that i = 3k”
or using our notation

∃k ∈ Z, (i = 3k)
this is the same as the infinite expression
(i = 3 · 0) ∨ (i = 3 · 1) ∨ (i = 3 ·−1) ∨ and so on
∗ Note that this is a conditional statement, as its truth
depends on the value given to the variable i.

• “At least one of 100, 101, and 103 is a multiple of 3”
∃j ∈ {100, 101, 103}, ∃k ∈ Z, (j = 3k)

this is the same as
(∃k ∈ Z, (100 = 3k))

∨ (∃k ∈ Z, (101 = 3k))
∨ (∃k ∈ Z, (102 = 3k))

∗ Note that this is a tautology. Both variables j and k
are “local” to the expression, so the truth of it does
not depend on their values.

Typeset September 29, 2004 5

Discrete Math. for Engineering, 2004. Notes 3. Theodore Norvell, Memorial University

• “For all integers, either the integer or the next integer
or the one after that is divisible by 3”
∀i ∈ Z,∃j ∈ {i, i + 1, i + 2},∃k ∈ Z, (j = 3k)

∗ This too is a tautology.
• Suppose that P is a predicate on the integers. I.e.
P (j) is true if j has property P .
∗ “There is no number with property P larger than j”
∗We can say for all larger numbers, P does not hold

∀k ∈ Z, (k > j → ¬P (k))
∗ Or we could say that there does not exist a number
larger than k for which P holds

¬∃k ∈ Z, (k > j ∧ P (k))
∗ This is a conditional statement. Its truth depends
on the what the property is and, perhaps, on what
value j has.

• There is no largest prime. Let prime be the property
of being prime.
∗We can say that “for each integer there is a larger
prime”

∀j ∈ Z, ∃k ∈ Z, (k > j ∧ prime(k))

Typeset September 29, 2004 6

Discrete Math. for Engineering, 2004. Notes 3. Theodore Norvell, Memorial University

• Suppose that y and x are functions of time in seconds.
∗ “The value of y is always twice the value of x”

∀t ∈ R, (y(t) = 2× x(t))

∗ “The value of y is always the value of x delayed by
3 seconds”

∀t ∈ R, (y(t) = x(t− 3))
or equivalently

∀t ∈ R, (y(t + 3) = x(t))

∗ “The value of y is the value of x delayed by less
than three seconds.

∃d ∈ (0, 3),∀t ∈ R, (y(t + d) = x(t))

Typeset September 29, 2004 7

Discrete Math. for Engineering, 2004. Notes 3. Theodore Norvell, Memorial University

De Morgan’s law for quantifiers:
Recall that I claimed the expressions

¬∀k ∈ Z, (k > j → ¬P (k))
and

∃k ∈ Z, (k > j ∧ P (k))
are equivalent.
In general ¬ (∀j ∈ S, f (j)) will be equivalent to
(∃j ∈ S,¬f(j)).
Informal proof: Consider ¬ (∀j ∈ S, f(j)). Where
S = {s0, s1, ...} We can find an equivalent expression as
follows

¬ (∀j ∈ S, f (j))

⇔ ¬(f (s0) ∧ f (s1) ∧ ...) Informal definition of ∀
⇔ (¬f (s0) ∨ ¬f(s1) ∨ ...) DeMorgan’s law
⇔ (∃j ∈ S,¬f(j)) Informal definition of ∃

So we have
DeMorgan’s law ¬ (∀j ∈ S, f(j))⇔ (∃j ∈ S,¬f(j))

Typeset September 29, 2004 8

Discrete Math. for Engineering, 2004. Notes 3. Theodore Norvell, Memorial University

From this we can prove
¬ (∃j ∈ S, f(j))

⇔ ¬ (∃j ∈ S,¬¬f (j)) Involution
⇔ ¬¬ (∀j ∈ S,¬f (j)) DeMorgan’s law
⇔ (∀j ∈ S,¬f(j)) Involution

So
¬ (∃j ∈ S, f(j))⇔ (∀j ∈ S,¬f (j))

Typeset September 29, 2004 9

Discrete Math. for Engineering, 2004. Notes 3. Theodore Norvell, Memorial University

Formally defining the quantifiers
We might formally define the quantifiers in terms of set
notation.

(∃x ∈ S, f(x)) ⇔ ({x | x ∈ S ∧ f(x)} 6= ∅)
(∀x ∈ S, f(x)) ⇔ ({x | x ∈ S ∧ f(x)} = S)

Using these definitions we can more formally prove laws.
For example, here is a formal proof of the De Morgan’s
law we informally proved above. In this proof, we take
the universe to be S.

¬ (∀j ∈ S, f(j))

⇔ ¬ ({x | f(x)} = S)

⇔ ({x | f (x)} 6= S)

⇔
³
{x | f (x)} 6= ∅

´
⇔ ({x | ¬f (x)} 6= ∅)
⇔ (∃j ∈ S,¬f (j))

Typeset September 29, 2004 10

Discrete Math. for Engineering, 2004. Notes 3. Theodore Norvell, Memorial University

Free and bound variables
Whenever a variable occurs in an expression, we can
classify the occurrence as either “free” or “bound”.
• Free occurrences refer to quantities that are external
to the expression.

• Bound occurrences are occurrences of variables that
are local to the expression.

Consider an expression
V = 100× I

this expresses a relationship between external quantities
named V and I. The names connect the expression to
quantities in the real world. The occurrences of V and I
are free.
Boolean expressions with free occurrences of variables
can serve as describe relationships between physical
quantities. The variable names serve to connect the
expression to specific quantities in a design.

Typeset September 29, 2004 11

Discrete Math. for Engineering, 2004. Notes 3. Theodore Norvell, Memorial University

Bound occurrences of variables represent quantities that
are entirely local to the expression. For example the
expression

m =

 X
j∈{1,...,n}

j

expresses a relationship between numbers m and n, but
the variable j is entirely local to the expression. We can
rename variable j to something else without changing
the meaning of the expression at all. For example

m =

 X
k∈{1,...,n}

k

Some other examples of bound variables.
• The expression

w <

Z z

0

ex dx

expresses a constraint on the values of w and z. All
occurrences of x are bound. We could equivalently
write

w <

Z z

0

ey dy

Typeset September 29, 2004 12

Discrete Math. for Engineering, 2004. Notes 3. Theodore Norvell, Memorial University

• The expression
S = {k | 0 ≤ k ≤ n2}

is equivalent to
S = {j | 0 ≤ j ≤ n2}

Both express a relationship between S and n. The
occurrences of k and j are bound.

• The expression
∀t ∈ R, (y(t + 3) = x(t))

is equivalent to the expression
∀u ∈ R, (y(u + 3) = x(u))

Both express a relationship between functions named
x and y. The occurrences of t and u are bound.

•When we define a function by an equation, the
parameter is a bound variable. For example, if we
define a function f by the equation

f(t) = 2x(t− 1)
the occurrences of t are considered bound. Such a
definition is perhaps more properly written as

∀t ∈ R, (f(t) = 2x(t− 1))
However, mathematicians and engineers habitually
omit to write the quantification in such cases.

Typeset September 29, 2004 13

Discrete Math. for Engineering, 2004. Notes 3. Theodore Norvell, Memorial University

Important sanity check. If you are trying to express a
constraint between named quantities. Make sure that the
variables that occur free in the expression are the same
as the names of the quantities you are trying to express.
For example.

Q. Express the constraint “x is a multiple of y”
A0. x = ky
A1. ∀x ∈ Z,∀y ∈ Z,∃k ∈ Z, (x = ky)
A2. ∃k ∈ Z, (x = ky)

In A0 we are expressing a relationship between 3
quantities, not 2.
In A1 we are expressing a property of the integers (a
property that happens to be false). The expression in A1
is equivalent to F and does not express a constraint on
x and y.
In A2 we get it right. The free variables are x and y, as
one would expect.

Typeset September 29, 2004 14

Discrete Math. for Engineering, 2004. Notes 3. Theodore Norvell, Memorial University

Revisiting some definitions
Earlier we defined equivalence of propositional
expressions. In a propositional expression, all
occurrences are free and all variables are propositional
variables. We don’t need these restrictions.
Equivalence revisited. We say that any two expressions
A and B are equivalent (written A ⇔ B) iff they are
equal for all values of their free variables.
Note that A and B don’t need to be boolean expressions.
For example
• ∃k ∈ Z, (x = ky) is equivalent to ¬∀j ∈ Z, (x 6= jy)

• ∃k ∈ Z, (x = ky) is not equivalent to ∃k ∈ Z, (w = kz)

Tautology revisited. We say that a boolean expression
is a tautology, if it is true for all values of its free
variables.
For example, if we understand the type of x to be Z then

∃k ∈ Z, k > x

is a tautology. While it “formally” expresses a constraint
on variable x, this constraint turns out to be satisfied for
every integer value x.

Typeset September 29, 2004 15

Discrete Math. for Engineering, 2004. Notes 3. Theodore Norvell, Memorial University

Inference revisited. For boolean expressions A and B
we can infer B from A (written A ⇒ B) iff A → B is a
tautology.

Typeset September 29, 2004 16

