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Module 1. Integers, Induction, and
Recurrences
This module will look at
• The integers and the natural numbers.
• Division and divisors, greatest common divisors
• Methods of reasoning including proof by contradiction
and proof by induction.

Since discrete math deals with discrete entities, we
can count them and so the counting numbers play an
important role.
Reading: Gossett Ch 3.1, 3.2, 3.3, 3.4 (optional), 3.6.
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Integers and Natural Numbers
Recall:
• The integers Z = {0, 1,−1, 2,−2, ...}
• and the natural numbers N = {0, 1, 2, ...}
These are important sets. We will study them for their
own sake and use them as a source of examples of
general proof techniques that apply throughout math.
Axiom: The well ordering principle (WOP). For any set
of natural numbers, there is a unique smallest member.
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Starting point.
• Besides the WOP, we’ll assume that the basic facts of
addition, subtraction, multiplication, and comparison
are all understood for the integers and the natural
numbers.

• For example, I’ll use the inference for natural numbers
a · b < c · b⇒ a < c

without stopping to justify it.
• It would be possible to start instead with just 0 and
two functions succ and prec as “undefined terms” and a
small number of axioms (called the Peano postulates)
about them and define everything else in terms of
these undefined terms. (The functions turn out to be
such that succ(x) = x+1 and prec(x) = x−1. However,
such an exercise would take a while and not add much
to your practical understanding of the integers.

• Therefore we next look at division of integers.
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Division
Lemma: “The Euclidean lemma” For any a, b ∈ N, with
b 6= 0, there exists a pair of natural numbers (q, r) such
that a = qb + r and r < b.
Aside:We can express this theorem more concisely as
∀a, b ∈ N, [b 6= 0→ ∃q, r ∈ N, (a = qb + r ∧ r < b)]

Proof
• Let a and b be any natural numbers at all
• Suppose that b 6= 0.
• We need to show that there exist natural numbers q
and r that satisfy the constraints

a = qb + r and r < b

• Consider the set
S , {s ∈ N | ∃q ∈ N, s = a− qb}

• S is not empty because, by choosing q = 0, we can
see that a ∈ S.

• Since S is not empty, there is (by the WOP) a smallest
member. Call it r0.
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• Let q0 be such that r0 = a − q0b (such a q0 must exist
since r0 ∈ S)

• From the definition of q0 (adding q0b to both sides) we
have a = q0b + r0

• Proof that r0 < b.
∗ Suppose (falsely, it will turn out) r0 ≥ b

∗ Let r1 = r0 − b. Note r1 ∈ N since r0 ≥ b.
∗ Let q1 = q0 + 1

∗
r1 = r0 − b

= a− q0b− b

= a− (q0b + b)

= a− (q0 + 1)b
= a− q1b

∗ So r1 ∈ S. But this contradicts that r0 is the small-
est member of the set.

• Thus, in fact, r0 < b

• (q0, r0) is a pair that satisfies the constraints.
¤
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Aside on reasoning techniques used
This single proof illustrates several important proof
techniques.

Direct proof of “for all”

To prove that all members of a set S have some property
P : Pick a name x for an arbitrary member of the set,
then show that P (x) is true.
We wrote:

• Suppose that a, b are any natural numbers at all.
• The rest of the proof shows that

b 6= 0→ ∃q, r ∈ N, (a = qb + r ∧ r < b)

Direct proof of implication

To prove an implication P → Q: Suppose that P is true,
show that Q is also true.
We wrote:
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• Suppose that b 6= 0.
• The rest of the proof shows

∃q, r ∈ N, (a = qb + r ∧ r < b)

Likewise, to show P ∨ Q: Suppose that ¬P is true and
show that Q must then be true.
This is because P ∨Q⇔ ¬P → Q.

Constructive proof of existence

To show that ∃x ∈ S, P (x): Find an example x0 ∈ S and
then show that P (x0) is true.
We constructed numbers r0 and q0 and then showed that
a = q0b + r0 ∧ r0 < b

Justifying existence

If you introduce a name for an object that has certain
properties, then you must be able to justify that such an
object actually exists.
In the example,
• we justified the existence of a the smallest member of
S by appealing to the WOP and
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• we justified the existence of a q0 such that r0 = a− q0b
by the fact that r0 ∈ S and by defining property of the
set S.

Proof of a conjunction

To show P ∧ Q: Prove P and then prove Q. (Actually,
when proving Q we may assume P , since it has
already been proved, or, to put it another way, because
P ∧Q⇔ P ∧ (P → Q).)
To prove a = q0b+ r0 ∧ r0 < b we first proved a = q0b+ r0
and then proved r0 < b.

Proof by contradiction

To show P : Assume ¬P and then prove something that
is false.
We wanted to show r0 < b, so we assumed that r0 ≥ b
and then showed that this implied that r0 is not the
smallest member of S, when in fact, by definition, it is.

• Suppose (falsely, it will turn out) r0 ≥ b
∗ This part of the proof shows a contradiction.

• Thus, in fact, r0 < b
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Back to division
We can extend the above lemma in two ways. First
we extend it from the natural numbers to the integers.
Second, we show that the pair is unique.
Notn: The absolute value of an integer b is the natural
number |b| such that |b| = b ∨ |b| = −b.
Theorem: “The Euclidean Division Algorithm” [Note
this is not really an algorithm, It is an existence theorem.]
For any a, b ∈ Z with b 6= 0, there exists a unique pair of
integers (q, r) such that a = qb + r and 0 ≤ r < |b|
Proof of existence.
• Let a and b be any members of Z with b 6= 0.
• Case: a, b ∈ N
∗ Our Euclidean lemma already proves the existence
of (q, r)

• Case a ∈ N and −b ∈ N
∗ Let (q1, r1) be such that −bq1 + r1 = a and
0 ≤ r1 < −b. (Such a pair must exist by the
Euclidean lemma)
∗ Let q0 = −q1 and r0 = r1
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∗ The pair (q0, r0) satisfies the constraints a = q0b+ r0
and 0 ≤ r0 < |b|

• Case −a ∈ N and b ∈ N
∗ Let (q1, r1) be such that bq1+r1 = −a and 0 ≤ r1 < b.
(Such a pair must exist by the Euclidean lemma)
∗ Case r1 > 0

a = −bq1 − r1
= −b(q1 + 1− 1)− r1
= −b(q1 + 1) + b− r1

· Let q0 = −(q1 + 1) and r0 = b− r1

· Note that since 0 < r1 < b we have 0 < r0 < b

· The pair (q0, r0) satisfies the constraints a =
q0b + r0 and 0 ≤ r0 < |b|

∗ Case r1 = 0
· a = −bq1
· Let q0 = −q1 and r0 = 0
· The pair (q0, r0) satisfies the constraints a =
q0b + r0 and 0 ≤ r0 < |b|

• Case −a ∈ N and −b ∈ N
∗ Let (q1, r1) be such that −bq1 + r1 = −a and
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0 ≤ r1 < −b. (Such a pair must exist by the
Euclidean lemma)
∗ Case r1 > 0

a = bq1 − r1
= b(q1 + 1− 1)− r1
= b(q1 + 1)− b− r1
= b(q1 + 1) + (−b− r1)

· Let q0 = (q1 + 1) and r0 = (−b− r1).
· Note that since 0 < r1 < −b we have 0 < r0 < −b
· The pair (q0, r0) satisfies the constraints a =
q0b + r0 and 0 ≤ r0 < |b|

∗ Case r1 = 0
· a = bq1

· Let q0 = q1 and r0 = 0
· The pair (q0, r0) satisfies the constraints a =
q0b + r0 and 0 ≤ r0 < |b|

¤
By the way, Gossett presents a much more elegant
existence proof by generalizing the construction we used
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to prove the lemma. For this reason he does not need
and does not present the lemma.

Aside
This proof illustrates two more useful proof techniques

Proof by cases.

We want to prove P . First assume A0 and prove P under
that assumption. Then assume A1 and prove P under
that assumption. As long as A0 ∨ A1 is clearly true, then
we have proved P .
The idea extends to any number of cases.

Using previously proved theorems and lemmata

In the above proof we appealed a number of times to the
lemma proved earlier.
It makes sense to decompose complicated arguments
into a number of theorems, just as one would decompose
a complex algorithm into a number of subroutines.
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Back to the Euclidean Algorithm
The Euclidean Algorithm asserts also that the pair (q, r)
is unique.
Proof of uniqueness.
• Let a and b be any integers such that b 6= 0
• Suppose that (q1, r1) and (q2, r2) are two (possibly equal)
pairs that such that

0 ≤ r1, r2 < |b| ,
a = q1b + r1, and
a = q2b + r2

• Then q1b + r1 = q2b+ r2

• So b(q1 − q2) = r2 − r1

• Since 0 ≤ r1, r2 < |b| we know |r2 − r1| < |b|
• From the last two lines: |b| · |q1 − q2| < |b|
• Cancelling the |b| we get |q1 − q2| < 1
• Hence (as q0 and q1 are both integers) q1 = q2

• And since b(q1 − q2) = r2 − r1 this means r1 = r2

¤

Typeset October 10, 2004 13



Discrete Math. for Engineering, 2004. Notes 4. Integers and division Theodore Norvell, Memorial University

Aside on the proof technique
This proof illustrates a common method of proving
uniqueness (nonduplication)
To show that no more than 1 thing has property P :
• Let x and y be any two things.
• Assume P (x) and P (y).
• Show x = y under these assumptions.

Underlying this proof technique is the following fact about
sets

(∃x, y ∈ S, x 6= y)⇒ |S| > 1
or contrapositively

(∀x, y ∈ S, x = y)⇒ |S| ≤ 1
which might be worth a moment’s thought. (What if
S = ∅?)
Back to division again

If (q, r) satisfy the conditions set out
• we call q the quotient of a divided by b and
• we call r the remainder of a divided by b.
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Notation

div We write a div b to mean the quotient, when a is
divided by b.
mod We write amod b to mean the remainder when a is
divided by b.
Thus, when b 6= 0, b(a div b) + amod b = a and
0 ≤ amod b < |b|
Examples
• 9 div 3 = 3 while 9mod 3 = 0
• 10 div 3 = 3 while 10mod 3 = 1
• 11 div 3 = 3 while 11mod 3 = 2
• −9 div 3 =−3 while −9mod 3 = 0
• −10 div 3 =−4 while −10mod 3 = 2
• −11 div 3 =−4 while −11mod 3 = 1
• 10 div−3 =−3 while 10mod−3 = 1
• −10 div−3 = 4 while −10mod−3 = 2
If x is a real number then
• “floor” bxc is the largest integer not larger than x
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• “ceiling” dxe is the smallest integer not smaller than x
Note that
• a div b = ¥ab¦, if b > 0
• a div b = §a

b

¨
, if b < 0

• a div b = a
b iff amod b = 0

• amod b = a− b(a div b)
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Divisibility
Divisibility: For a, b ∈ Z, we say that b | a ( b divides a )
iff there exists an integer q such that a = bq.
When b 6= 0, this is to say amod b = 0 or that a div b = a

b

True or false?
• 6 | 12, 6 | 6, 6 | 0, 6 | −6 all true
• 6 | 11 false
• 0 | 0 true
Theorem: If a | b and a | c then
• a | b + c

• a | k · b, for any k ∈ Z.
• a | b− c

Theorem: For all a, b, c ∈ N
• Reflexivity: a | a
• Antisymmetry: If a | b and b | a then a = b

• Transitivity: If a | b and b | c then a | b.
This is to say divisibility is a partial order on the naturals.
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(For the integers, divisibility is reflexive and transitive, but
not antisymmetric. Why?)
Divisors. We say that the divisors of an integer a is the
set of integers b such that b|a.
Congruence. If integers a, b, and m are such that
m | (a− b) then we say that a and b are congruent mod.
m.
Thus for each integerm there is a different binary relation
of congruence.
Notn.We write a ≡ b (modm) to mean that a and b are
congruent mod m.
Aside: Note that the use of the symbol mod here is quite
different from our earlier use of mod as a binary operator.
Here we are using mod in a parenthetical remark that
indicates which relation of congruence we are dealing
with at the moment.
Theorem. If a ≡ b (modm) and c ≡ d (modm) then
• a + c ≡ b+ d (modm)

• ka ≡ kb (modm)

• ac ≡ bd (modm)

Typeset October 10, 2004 18



Discrete Math. for Engineering, 2004. Notes 4. Integers and division Theodore Norvell, Memorial University

Proof

Assume a ≡ b (modm) and c ≡ d (modm)

• Since a ≡ b (modm) we know m | (a− b)

• And thus there is an integer q0 such that q0m = (a−b).
• Similarly, there is an integer q1 such that q1m = (c−d).
• Part 0: WTP a + c ≡ b + d (modm)
∗ Consider (a + c)− (b + d)

(a + c)− (b + d) = (a− b) + (c− d)

= q0m + q1m

= (q0 + q1)m

∗ Since (a + c)− (b + d) = (q0 + q1)m,
a + c ≡ b + d (modm)

• Part 1: WTP ka ≡ kb (modm)
∗ Consider ka− kb

ka− kb = k(a− b)− kq0m

∗ Since ka− kb = kq0m, ka ≡ kb (modm)
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• Part 2 WTP ac ≡ bd (modm)
∗ We know a = q0m + b and d = c− q1m

∗ Consider ac− bd

ac− bd = (q0m + b)c− b(c− q1m)

= q0mc + bc− bc + q1mb

= (q0c + q1b)m

∗ So ac ≡ bd (modm)

¤
Theorem. For all a, b, c,m ∈ Z and m 6= 0
• Reflexivity: a ≡ a (modm)

• Symmetry: a ≡ b (modm) iff b ≡ a (modm)

• Transitivity: If a ≡ b (modm) and b ≡ c (modm)
then a ≡ c (modm).

This is to say that congruence mod m is an equivalence
relation.
GCD: The greatest common divisor of two integers (not
both 0) is the largest integer that divides both.
I.e. gcd(a, b) | a and gcd(a, b) | b and for all c if c | a and
c | b then c ≤ gcd(a, b).
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E.g.
• gcd(12, 8) is what?
• gcd(9, 3) is what?
• gcd(0, 20) is what?
• gcd(10, 21) is what?
If gcd(a, b) = 1, what does that say about a and b?
Theorem
• gcd(0, b) = b, if b is a positive integer
• gcd(a, b) = gcd(b, a), if either a 6= 0 or b 6= 0
• If b 6= 0, then gcd(a, b) = gcd(amod b, b)
Proof of last part
Let r = amod b and q = a div b. Then a = qb + r.
• Let g0 = gcd(a, b) and g1 = gcd(r, b)
• Since g1 | r and g1 | b, we have g1 | qb + r, and thus
g1 | a

• Also g1 | b and so g1 is a divisor of both a and b. Thus
g1 ≤ g0 (by definition of GCD)

• Since g0 | b we have g0 | qb.
• Since g0 | a and g0 | qb we have g0 | a − qb and thus
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g0 | r.
• Since g0 divides both r and b we have g0 ≤ g1 (by the
definition of GCD)

• Since g1 ≤ g0 and g0 ≤ g1 we have g0 = g1. ¤
Using this theorem we can see that the following
algorithm computes the gcd(A,B) for natural A and B
where A 6= 0 or B 6= 0

{ // Euclidean algorithm for GCD in C/Java notation.
int a = A, b = B ;
// Loop invariant: gcd(A,B) == gcd(a,b)
// && (a !=0 || b !=0)
while( b != 0 ) {

int r = a % b ;
a = b ;
b = r ; }

gcd = a ; }

Aside: What is a loop invariant?
• A loop invariant is a statement about the state of the
program that is true just before the evaluation of a
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loop’s guard expression (in this case b 6= 0 is the guard
expression).

• In our example, the invariant is trivially true at the start
of the first iteration because a and b are initialized to A
and B respectively.

• In our example, the invariant is true at the end of
each iteration because it was true at the start of the
iteration.
∗ To see this, let a and b be the values of ‘a’ and ‘b’
at the start of an iteration and let a0 and b0 be the
values of ‘a’ and ‘b’ at the end of the iteration:

a0 = b and b0 = amod b

∗We have
gcd(A,B) = gcd(a, b) Assuming the invariant holds at start

= gcd(b, amod b) Latest theorem
= gcd(a0, b0) From the loop body

∗ From the loop guard we have b 6= 0 so a0 6= 0.
∗ Thus gcd(A,B) = gcd(a0, b0) ∧ (b0 6= 0 ∨ a0 6= 0)

•When the loop is exited, the invariant gcd(A,B) =
gcd(a, b) will be true and so will b = 0. Thus, when the
loop is exited, gcd(A,B) = a.
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