Induction

Properties. A property of natural numbers is a function from the natural numbers to $\{T, F\}$.

Examples

- ullet Being odd: Define odd(n) to mean that natural number n is odd
- ullet Being prime: Define prime(n) to mean that n is prime
- ullet Triangular sum. Define tri(n) to mean

$$\left(\sum_{i=0}^{n} i\right) = \frac{n(n+1)}{2}$$

Of these odd and prime are not true of all natural numbers, but tri is true of all natural numbers

- $\bullet \neg \forall n \in \mathbb{N}, prime(n)$
- $\bullet \ \forall n \in \mathbb{N}, tri(n)$

Simple Induction

Suppose we know for a property ${\cal P}$ of the natural numbers that

- (a) *P* is true of 0.
- (b) that for any k in \mathbb{N} , if the property is true of k, then it is also true of k+1.

Then

- \bullet From (a) we know P(0) is true
- \bullet From (b) and P(0), we know P(1) is true
- \bullet From (b) and P(1), we know P(2) is true
- \bullet From (b) and P(2), we know P(3) is true
- and so on ad infinitum.

In fact it must be that P(n) is true for all $n \in \mathbb{N}$.

Theodore Norvell, Memorial University

3

Theodore Norvell, Memorial University

Example 0

Consider the property of n that $(\sum_{i=0}^{n} i) = \frac{n(n+1)}{2}$. We define

$$tri(n)$$
 iff $\left(\sum_{i=0}^{n} i\right) = \frac{n(n+1)}{2}$

ullet (a) (Base Step) We can confirm that tri(0) is true by plugging in the numbers

$$LHS = \left(\sum_{i=0}^{n} i\right) [n := 0] = \left(\sum_{i=0}^{0} i\right) = 0$$

and

$$RHS = \frac{n(n+1)}{2}[n := 0] = \frac{0(0+1)}{2} = 0 = LHS$$

- (b) (Induction Step) We can show that, for any k in \mathbb{N} , if tri(k), then tri(k+1)
 - * Proof
 - · Let k be any natural number
 - \cdot Assume tri is true of that k. I.e.

$$\left(\sum_{i=0}^{k} i\right) = \frac{k(k+1)}{2}$$

(This assumption is called the induction hypothesis)

· It remains to show tri(k+1)

· Calculate

Discrete Math. for Engineering, 2004. Notes 6. Induction

$$\sum_{i=0}^{k+1} i$$

$$= k+1+\sum_{i=0}^{k} i \text{ Split off last term.}$$

$$= k+1+\frac{k(k+1)}{2} \text{ By our assumption}$$

$$= \frac{2k+2+k^2+k}{2}$$

$$= \frac{k^2+3k+2}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$

- \cdot Thus tri(k+1) is true .
- Now we have
 - *tri(0) by the base step
 - *tri(1) by the induction step and tri(0)
 - * tri(2) by the induction step and tri(1)
 - * and so on

• In fact we have $\forall n \in \mathbb{N}, tri(n)$. That is

$$\forall n \in \mathbb{N}, \left(\sum_{i=0}^{n} i\right) = \frac{n(n+1)}{2}$$

The Theorem of Mathematical Induction

Principle: The "theorem of (simple) mathematical induction" states that

ullet For any property P of the natural numbers we have $\forall n \in \mathbb{N}, P(n)$ if

$$*P(0)$$
, and

* for all
$$k \in \mathbb{N}$$
, if $P(k)$ then $P(k+1)$

Notes

- \bullet The antecedent P(k) is called the "induction hypothesis" (Ind. Hyp.)
- Proof is based on the WOP. See book.
- In applying this theorem
 - *P(0) is called the "base step"
 - $* \ \forall k \in \mathbb{N}, P(k) \rightarrow P(k+1)$ is called the "inductive step"

Informal "proof": Recall that $P \wedge Q \Leftrightarrow P \wedge (P \rightarrow Q)$

• In the infinite case we have

$$P(0) \wedge P(1) \wedge P(2) \wedge \cdots$$

$$\Leftrightarrow P(0) \wedge (P(0) \to P(1)) \wedge (P(1) \to P(2)) \wedge \cdots$$

6

A proof by the theorem of (simple) mathematical induction answers the following questions

- (a) What is the property of the natural numbers?
- (b) What do we need to prove for the base step?
- (c) What is a proof of the base step?
- (d) What do we need to prove for the inductive step?
- (e) What is a proof of the inductive step?

Example 1

We will show that, for all $n \in \mathbb{N}$,

$$\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6$$

Proof:

Typeset October 20, 2004

- (a) Let P(n) be the property of a natural number n that $\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6$
- (b) Base Step: We need to show P(0),i.e.

$$\sum_{i=1}^{0} i^2 = 0(0+1)(0n+1)/6$$

* (c) Proof of Base Step: The LHS is 0 since the sum

of 0 things is always 0. The RHS simplifies to 0. Thus P(0) holds.

• (d) *Induction Step.* We need to show that $\forall k \in \mathbb{N}$, if

$$\sum_{i=1}^{k} i^2 = k(k+1)(2k+1)/6 \tag{*}$$

then

$$\sum_{i=1}^{k+1} i^2 = (k+1)((k+1)+1)(2(k+1)+1)/6 \qquad (**$$

* (e) Proof of Induction Step

Discrete Math. for Engineering, 2004. Notes 6. Induction

- * Let k be any natural number.
- * Assume (Induction Hypothesis)

$$\sum_{i=1}^{k} i^2 = k(k+1)(2k+1)/6$$

* We need to show (**).

$$\begin{split} & LHS \\ &= \sum_{i=1}^{k+1} i^2 \\ &= (k+1)^2 + \sum_{i=1}^k i^2 \text{ Split off last term} \\ &= (k+1)^2 + k(k+1)(2k+1)/6 \text{ By the ind. hyp. (*)} \\ &= k^2 + 2k + 1 + \frac{(k^2 + k)(2k+1)}{6} \text{ Expand} \\ &= k^2 + 2k + 1 + \frac{2k^3 + 3k^2 + k}{6} \text{ Expand} \\ &= \frac{2k^3 + 9k^2 + 13k + 6}{6} \text{ Put over common denom.} \end{split}$$

*

$$=\frac{RHS}{(k+1)((k+1)+1)(2(k+1)+1)}$$

$$=\frac{(k+1)(k+2)(2k+3)}{6} \text{ Adding}$$

$$=\frac{(k^2+3k+2)(2k+3)}{6} \text{Expand}$$

$$=\frac{2k^3+9k^2+13k+6}{6} \text{ Expand}$$

* Thus we have (**)

Discrete Math. for Engineering, 2004. Notes 6. Induction

• By the theorem of mathematical induction we have $\forall n \in \mathbb{N}, P(n)$.I.e. for all natural n,

$$\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6$$

Example 2 If $|S| \in \mathbb{N}$ then $|\mathcal{P}(S)| = 2^{|S|}$.

Recall that $\mathcal{P}(S)$ is the set of all subsets of S

Proof:

- (a) Let P(n) (for $n \in \mathbb{N}$) mean: for all sets S, if |S| = n then $|\mathcal{P}(S)| = 2^{n|}$
- We must show $\forall n \in \mathbb{N},$ for all sets S, if |S| = n then $|\mathcal{P}(S)| = 2^n$
- (b) Base Step: We must show that all sets of cardinality 0 have a power set of size 2^0 .
- (c) Proof of Base step:
 - * There is only one set of size 0 namely \emptyset . The power set of \emptyset is $\{\emptyset\}$ and has size 1, which equals 2^0
- (d) *Induction Step:* We must show that, for all $k \in \mathbb{N}$, if all sets of size k have a power set of size 2^k , then all sets of size k+1 have a power set of size 2^{k+1} .
- (e) Proof of induction step:
 - * Let *k* be any natural number.
 - * Assume (as Induction Hypothesis) that all sets of size k have a power set of size 2^k .

st Remains to prove: All sets of size k+1 have power sets of size 2^{k+1}

- * Let S be any set of size k + 1.
- * Let x be any member of S.

Discrete Math. for Engineering, 2004. Notes 6. Induction

- * We can partition $\mathcal{P}(S)$ into two disjoint sets $Q = \{T \subseteq S \mid x \notin T\}$ and $R = \{T \subseteq S \mid x \in T\}$.
- * Note. $\mathcal{P}(S) = Q \cup R$ and $Q \cap R = \emptyset$ So $|\mathcal{P}(S)| = |Q| + |R|$.
- * Also note that each element of R can be obtained from an element of Q by "unioning in" x.
- st And each element of Q can be obtained from an element of R by "subtracting out" x.
- * So |Q| = |R|.
- * Finally note that $Q=\mathcal{P}(S-\{x\})$ and since $|S-\{x\}|=k$ we have (by the ind. hyp.) $|Q|=2^k$
- $* |\mathcal{P}(S)| = |Q| + |R| = 2 \times |Q| = 2 \times 2^k = 2^{k+1}$
- \bullet By the theorem of mathematical induction $\forall n\in\mathbb{N}, \text{for all sets }S\text{, if }|S|=n\text{ then }|\mathcal{P}(S)|=2^n$ \Box

Example of the construction of ${\it Q}$ and ${\it R}$

13

 $S = \{a, b, c, d\}$

If x = a then we have

Q	R
$\{\emptyset$	$\{\{a\},$
$\{b\},$	$\{a,b\},$
$\{c\},$	$\{a,c\},$
$\{d\},$	$\{a,d\},$
$\{b,c\},$	$\{a,b,c\},$
$\{b,d\},$	$\{a,b,d\},$
$\{c,d\},$	$\{a, c, d\},$
$\{b,c,d\}\}$	$\{a,b,c,d\}\}$

Extending the principle

What if P(0) isn't true? Or isn't interesting. We can start from P(1) or P(2) and so on; even from P(-42).

Principle: The theorem of (simple) mathematical induction (extended version).

- For any property P of the integers and $n_0 \in \mathbb{Z}$
 - * if $P(n_0)$ and
 - * for all $k \in \{n_0, n_0 + 1, ...\}$, if P(k) then P(k + 1)
 - * then $\forall n \in \{n_0, n_0 + 1, ...\}, P(n)$

Example 3: Call a set of straight lines in a plane "independent" if any two lines meet at a point and no three lines meet at a point.

Theorem. For $n \in \{1, 2, ...\}$ any set of n independent lines divides the plane into $\frac{n^2+n+2}{2}$

Proof

- The property of n is: Any set of n independent lines divides the plane into $\frac{n^2+n+2}{2}$ regions.
- Base step: Must show that 1 line divides the plane into $\frac{1^1+1+2}{2}$ regions.
- Proof of base step: Clearly any line will divide the plane into 2 parts. And $\frac{1^1+1+2}{2}=2$.
- Induction step: Must show that, for all $k \geq 1$, if any set of k independent lines cuts the plane into $\frac{k^2+k+2}{2}$ regions, then any set of k+1 independent lines cuts the plane into $\frac{(k+1)^2+(k+1)+2}{2}$ regions.
- Proof of induction step:
 - * Let k be any integer ≥ 1 .
 - * Assume (ind. hyp.) that any set independent lines will cut the plane into $\frac{k^2+k+2}{2}$ regions.
 - * Let S be any set of independent lines of size k + 1.

- * Let x be any line in S
- $* |S \{x\}| = k$
- * Furthermore, since S is independent, $S-\{x\}$ is an independent set, so $S-\{x\}$ will (by the ind. hyp.) cut the plane into $\frac{k^2+k+2}{2}$ regions.
- * Now consider line x. It intersects each of the k other lines, and thus cuts though k+1 of the regions defined by $S-\{x\}$, dividing each in two. (The k points of intersection divide x into k+1 segments. Each segment cuts a region in 2.)
- * So S defines $k+1+\frac{k^2+k+2}{2}$ regions.
- * Now

$$k+1 + \frac{k^2 + k + 2}{2}$$

$$= \frac{k^2 + 3k + 4}{2}$$

$$= \frac{(k+1)^2 + k + 3}{2}$$

$$= \frac{(k+1)^2 + (k+1) + 2}{2}$$

 So, by the theorem of simple mathematical induction we have proved the theorem.

Complete Induction

Discrete Math. for Engineering, 2004. Notes 6. Induction

We can use a stronger induction hypothesis.

This often make the proof much easier.

Principle The theorem of complete mathematical induction:

- For any property *P* of the natural numbers
- If
 - * [Base step] P(0) and
 - * [Induction step] for all $k \ge 1$
 - · if for all integers j, with $0 \le j < k$, P(j)
 - \cdot then P(k)
- then for all $n \in \mathbb{N}$, P(n).

The induction hypothesis here is:

• "for all integers j, with $0 \le j < k$, P(j)".

'Informal Proof':

$$P(0) \wedge P(1) \wedge P(2) \wedge P(3) \wedge \cdots$$

$$\Leftrightarrow P(0) \wedge (P(0) \rightarrow P(1))$$

$$\wedge (P(0) \wedge P(1) \rightarrow P(2))$$

$$\wedge (P(0) \wedge P(1) \wedge P(2) \rightarrow P(3)) \wedge \cdots$$

Example 4

Consider the family of sequences defined by

$$p_{a,0}=1$$
 $p_{a,n}=a imes p_{a,n-1}$ if $n>0$ and n is odd $p_{a,n}=\left(p_{a,n/2}
ight)^2$ if $n>0$ and n is even

(For each value for a we get a sequence $p_{a,0}$, $p_{a,1}$, ...) Make a table or two:

Theorem: for all $n \in \mathbb{N}$, $a \in \mathbb{R}$, we have $p_{a,n} = a^n$.

Note: For the purpose of this theorem we will consider $0^0=1$.

Proof by complete induction.

- Let Q(n) mean that "for all $a \in \mathbb{R}$, we have $p_{a,n} = a^n$ "
- ullet Base step: We must show that Q(0). I.e. that for all $a\in\mathbb{R}$, we have $p_{a,0}=a^0$ "

• Proof of base step:

Discrete Math. for Engineering, 2004. Notes 6. Induction

- * Let a be any real number.
- * $RHS = p_{a,0} = 1$, by defn of p
- $*LHS = a^0 = 1$
- Induction step: We must show that, for all k>0, if Q(j), for all $j\in\{0,1,..,k-1\}$ then Q(k). I.e. for all k>0, if

$$\forall j \in \{0, 1, ..., k-1\}, \forall a \in \mathbb{R}, p_{a,j} = a^j$$
 (*

then

$$\forall a \in \mathbb{R}, p_{a,k} = a^k. \tag{**}$$

- Proof of induction step
 - * Let k be any natural ≥ 1 .
 - * Assume (as induction hypothesis) that

$$\forall j \in \{0, 1, ..., k-1\}, \forall a \in \mathbb{R}, p_{a,j} = a^j$$

- * Remains to show $\forall a \in \mathbb{R}, p_{a,k} = a^k$.
- * Let *a* be any real number.

- * Case that k is odd:
 - · Then we know $p_{a,k} = a \times p_{a,k-1}$
 - · Note that $0 \le k 1 < k$.
 - · We have

$$\begin{array}{l} p_{a,k}\\ = a\times p_{a,k-1} \mathrm{Defn} \ \mathrm{of} \ p\\ = a\times a^{k-1} \ \mathrm{Ind.} \ \mathrm{Hyp.}\\ = a^k \end{array}$$

- * Case that k is even:
 - \cdot Then by definition $p_{a,k} = \left(p_{a,k/2}
 ight)^2$
 - · Note that k/2 is an integer and $0 \le k/2 < k$.
 - · We have

$$p_{a,k}$$
 $= (p_{a,k/2})^2$ Defn of p
 $= (a^{k/2})^2$ Ind. Hyp.
 $= a^k$

So, by the theorem of complete mathematical induction, we have the theorem.

Extending Complete Induction

Discrete Math. for Engineering, 2004. Notes 6. Induction

We can be a bit more general than this, allowing the base case to start anywhere and for multiple base cases.

Principle The theorem of complete induction (extended version)

- For any n_0 and n_1 in \mathbb{Z} with $n_0 \leq n_1$ and property P of the integers
- If
 - * [Base steps] $P(n_0)$ and $P(n_0+1)$ and ... and $P(n_1-1)$ and
 - * [Induction step] for all integers $k \geq n_1$
 - · if for all integers j, with $n_0 \le j < k$, P(j)
 - \cdot then P(k)
- then, for all $n \in \{n_0, n_0 + 1, ...\}, P(n)$.

Here there are $n_1 - n_0$ base steps. Note that there can even be 0 base steps.

22

'Informal Proof' $n_0 = 0$ and $n_1 = 2$

$$P(0) \wedge P(1) \wedge P(2) \wedge P(3) \wedge \cdots$$

$$\Leftrightarrow P(0) \wedge P(1) \wedge (P(0) \wedge P(1) \rightarrow P(2))$$

$$\wedge (P(0) \wedge P(1) \wedge P(2) \rightarrow P(3)) \wedge \cdots$$

Example 5

Define the following "Fibonacci" sequence

$$fib_0 = 1$$

 $fib_1 = 1$
 $fib_n = fib_{n-1} + fib_{n-2}$, if $n > 1$

The Fibonacci sequence is $(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \cdots)$

Theorem: For all natural numbers n, $fib_n = ca^n + db^n$ where

$$c = \frac{5 + \sqrt{5}}{10} \qquad d = \frac{5 - \sqrt{5}}{10}$$

and

$$a = \frac{1+\sqrt{5}}{2} \simeq 1.61803$$
 $b = \frac{1-\sqrt{5}}{2} \simeq -0.61803$

Note. At the moment this theorem appears from "thin air". Later in the course, we will develop a method for deriving this and similar theorems.

Note.

Discrete Math. for Engineering, 2004. Notes 6. Induction

ullet The numbers a and b are the two solutions to the equation

$$\frac{1}{x} = x - 1$$

as you can see by the quadratic formula.

- The number a is often written as ϕ and is called the "golden ratio".
- The number b is often written ϕ' or as 1ϕ .
- One consequence of the theorem is

$$\lim_{n \to \infty} \frac{fib_{n+1}}{fib_n} = \phi$$

Theodore Norvell, Memorial University

Theodore Norvell, Memorial University

24

Lemma: $\frac{1}{a} + \frac{1}{a^2} = 1 = \frac{1}{b} + \frac{1}{b^2}$

Proof of lemma:
$$\frac{1}{a} + \frac{1}{a^2} = \frac{1}{a} + \frac{1}{a}(a-1) = (a-1+1)\frac{1}{a} = a\frac{1}{a} = 1$$

And similarly for b.

Remark: Why this lemma? In actuality, I was most of the way through the proof of the theorem before I realized that this lemma would be useful. For presentation reasons it is convenient to prove it first.

Proof of theorem: By complete induction with 2 base cases.

The property P(n) is " $fib_n = ca^n + db^n$ "

First base step: for n=0. We must show $fib_0=ca^0+db^0$

Proof of first base step

Discrete Math. for Engineering, 2004. Notes 6. Induction

$$ca^{0} + db^{0}$$

$$= c + d$$

$$= \frac{\left(5 + \sqrt{5}\right) + \left(5 - \sqrt{5}\right)}{10}$$

$$= \frac{10}{10}$$

$$= 1$$

$$= fib_{0} \text{ by defn}$$

Second base step: for n = 1. We must show $fib_1 = ca^1 + db^1$

Proof of second base step

$$ca^{1} + db^{1}$$

$$= \frac{5 + \sqrt{5}}{10} \cdot \frac{1 + \sqrt{5}}{2} + \frac{5 - \sqrt{5}}{10} \cdot \frac{1 - \sqrt{5}}{2}$$

$$= \frac{(5 + \sqrt{5})(1 + \sqrt{5}) + (5 - \sqrt{5})(1 - \sqrt{5})}{20}$$

$$= \frac{5 + 6\sqrt{5} + 5 + 5 - 6\sqrt{5} + 5}{20}$$

$$= \frac{20/20}{100}$$

$$= \frac{1}{20}$$

Inductive step: We must show that for all integers $k \ge 2$, if, for all integers j, with $0 \le j < k$, P(j), then P(k).

- Let k be any integer ≥ 2 .
- Assume (as the ind. hyp.) that

for all j with
$$0 \le j < k$$
, $fib_j = ca^j + db^j$

• In particular (as $k \ge 2$) the ind. hyp. implies that

$$fib_{k-1} = ca^{k-1} + db^{k-1} \tag{*}$$

and that

$$fib_{k-2} = ca^{k-2} + db^{k-2} \tag{**}$$

• It remains to show that $fib_k = ca^k + db^k$

$$\begin{array}{l} fib_k \,=\, fib_{k-1} + fib_{k-2} \ \mathsf{Defn} \ \mathsf{of} \ fib \ \mathsf{as} \ k \geq 2 \\ &=\, ca^{k-1} + db^{k-1} + ca^{k-2} + db^{k-2} \ \mathsf{From} \ (\texttt{*}) \ \mathsf{and} \ (\texttt{**}) \\ &=\, c \left(a^{k-1} + a^{k-2}\right) + d \left(b^{k-1} + b^{k-2}\right) \ \mathsf{Distributivity} \\ &=\, c \left(\frac{a^k}{a} + \frac{a^k}{a^2}\right) + d \left(\frac{b^k}{b} + \frac{b^k}{b^2}\right) \\ &=\, ca^k \left(\frac{1}{a} + \frac{1}{a^2}\right) + db^k \left(\frac{1}{b} + \frac{1}{b^2}\right) \ \mathsf{Distributivity} \\ &=\, ca^k + db^k \ \mathsf{Lemma}. \end{array}$$

So, by the theorem of complete mathematical induction, we have proved the theorem. \Box