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Induction
Properties. A property of natural numbers is a function
from the natural numbers to {T, F}.
Examples
• Being odd: Define odd(n) to mean that natural number
n is odd

• Being prime: Define prime(n) to mean that n is prime
• Triangular sum. Define tri(n) to meanÃ

nX
i=0

i

!
=
n(n + 1)

2

Of these odd and prime are not true of all natural
numbers, but tri is true of all natural numbers
• ¬∀n ∈ N, prime(n)

• ∀n ∈ N, tri(n)
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Simple Induction
Suppose we know for a property P of the natural
numbers that
• (a) P is true of 0.
• (b) that for any k in N, if the property is true of k, then
it is also true of k + 1.

Then
• From (a) we know P (0) is true
• From (b) and P (0), we know P (1) is true
• From (b) and P (1), we know P (2) is true
• From (b) and P (2), we know P (3) is true
• and so on ad infinitum.
In fact it must be that P (n) is true for all n ∈ N.
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Example 0
Consider the property of n that (

Pn
i=0 i) =

n(n+1)
2 .

We define

tri(n) iff

Ã
nX
i=0

i

!
=
n(n + 1)

2

• (a) (Base Step) We can confirm that tri(0) is true by
plugging in the numbers

LHS =

Ã
nX
i=0

i

!
[n := 0] =

Ã
0X

i=0

i

!
= 0

and
RHS =

n(n + 1)

2
[n := 0] =

0(0 + 1)

2
= 0 = LHS

• (b) (Induction Step) We can show that, for any k in N,
if tri(k), then tri(k + 1)
∗ Proof
· Let k be any natural number
· Assume tri is true of that k. I.e.Ã

kX
i=0

i

!
=
k(k + 1)

2

(This assumption is called the induction hypothe-
sis)
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· It remains to show tri(k + 1)

· Calculate
k+1X
i=0

i

= k + 1 +
kX
i=0

i Split off last term.

= k + 1 +
k(k + 1)

2
By our assumption

=
2k + 2 + k2 + k

2

=
k2 + 3k + 2

2

=
(k + 1)(k + 2)

2
· Thus tri(k + 1) is true .

• Now we have
∗ tri(0) by the base step
∗ tri(1) by the induction step and tri(0)
∗ tri(2) by the induction step and tri(1)
∗ and so on
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• In fact we have ∀n ∈ N, tri(n). That is
∀n ∈ N,

Ã
nX
i=0

i

!
=
n(n + 1)

2

Typeset October 20, 2004 5

Discrete Math. for Engineering, 2004. Notes 6. Induction Theodore Norvell, Memorial University

The Theorem of Mathematical Induction
Principle: The “theorem of (simple) mathematical
induction” states that
• For any property P of the natural numbers we have
∀n ∈ N, P (n) if
∗ P (0), and
∗ for all k ∈ N, if P (k) then P (k + 1)

Notes
• The antecedent P (k) is called the “induction hypothe-
sis” (Ind. Hyp.)

• Proof is based on the WOP. See book.
• In applying this theorem
∗ P (0) is called the “base step”
∗ ∀k ∈ N, P (k) → P (k + 1) is called the “inductive
step”

Informal “proof”: Recall that P ∧Q⇔ P ∧ (P → Q)

• In the infinite case we have
P (0) ∧ P (1) ∧ P (2) ∧ · · ·

⇔ P (0) ∧ (P (0)→ P (1)) ∧ (P (1)→ P (2)) ∧ · · ·
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A proof by the theorem of (simple) mathematical
induction answers the following questions
• (a) What is the property of the natural numbers?
• (b) What do we need to prove for the base step?
• (c) What is a proof of the base step?
• (d) What do we need to prove for the inductive step?
• (e) What is a proof of the inductive step?
Example 1
We will show that, for all n ∈ N,

nX
i=1

i2 = n(n + 1)(2n + 1)/6

Proof:
(a) Let P (n) be the property of a natural number n thatPn

i=1 i
2 = n(n + 1)(2n + 1)/6

• (b) Base Step: We need to show P (0),i.e.
0X

i=1

i2 = 0(0 + 1)(0n + 1)/6

∗ (c) Proof of Base Step: The LHS is 0 since the sum
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of 0 things is always 0. The RHS simplifies to 0.
Thus P (0) holds.

• (d) Induction Step. We need to show that ∀k ∈ N, if
kX
i=1

i2 = k(k + 1)(2k + 1)/6 (*)

then
k+1X
i=1

i2 = (k + 1)((k + 1) + 1)(2(k + 1) + 1)/6 (**)

∗ (e) Proof of Induction Step
∗ Let k be any natural number.
∗ Assume (Induction Hypothesis)

kX
i=1

i2 = k(k + 1)(2k + 1)/6
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∗We need to show (**) .
LHS

=
k+1X
i=1

i2

= (k + 1)2 +
kX
i=1

i2 Split off last term

= (k + 1)2 + k(k + 1)(2k + 1)/6 By the ind. hyp. (*)

= k2 + 2k + 1 +
(k2 + k)(2k + 1)

6
Expand

= k2 + 2k + 1 +
2k3 + 3k2 + k

6
Expand

=
2k3 + 9k2 + 13k + 6

6
Put over common denom.
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∗
RHS

=
(k + 1)((k + 1) + 1)(2(k + 1) + 1)

6

=
(k + 1)(k + 2)(2k + 3)

6
Adding

=
(k2 + 3k + 2)(2k + 3)

6
Expand

=
2k3 + 9k2 + 13k + 6

6
Expand

∗ Thus we have (**)
• By the theorem of mathematical induction we have
∀n ∈ N, P (n).I.e. for all natural n,

nX
i=1

i2 = n(n + 1)(2n + 1)/6

¤
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Example 2 If |S| ∈ N then |P(S)| = 2|S|.
Recall that P(S) is the set of all subsets of S
Proof:
• (a) Let P (n) (for n ∈ N) mean: for all sets S, if |S| = n
then |P(S)| = 2n|

•We must show ∀n ∈ N, for all sets S, if |S| = n then
|P(S)| = 2n

• (b) Base Step:Wemust show that all sets of cardinality
0 have a power set of size 20.

• (c) Proof of Base step:
∗ There is only one set of size 0 namely ∅. The power
set of ∅ is {∅} and has size 1, which equals 20

• (d) Induction Step: We must show that, for all k ∈ N, if
all sets of size k have a power set of size 2k, then all
sets of size k + 1 have a power set of size 2k+1.

• (e) Proof of induction step:
∗ Let k be any natural number.
∗ Assume (as Induction Hypothesis) that all sets of
size k have a power set of size 2k.
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∗ Remains to prove: All sets of size k + 1 have power
sets of size 2k+1

∗ Let S be any set of size k + 1.
∗ Let x be any member of S.
∗We can partition P(S) into two disjoint sets Q =
{T ⊆ S | x /∈ T} and R = {T ⊆ S | x ∈ T}.
∗ Note. P(S) = Q ∪ R and Q ∩ R = ∅ So |P(S)| =
|Q| + |R|.
∗ Also note that each element of R can be obtained
from an element of Q by “unioning in” x.
∗ And each element of Q can be obtained from an
element of R by “subtracting out” x.
∗ So |Q| = |R|.
∗ Finally note that Q = P(S − {x}) and since
|S − {x}| = k we have (by the ind. hyp.) |Q| = 2k
∗ |P(S)| = |Q| + |R| = 2× |Q| = 2× 2k = 2k+1

• By the theorem of mathematical induction
∀n ∈ N, for all sets S, if |S| = n then |P(S)| = 2n
¤

Example of the construction of Q and R
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S = {a, b, c, d}
If x = a then we have

Q R
{∅ {{a},
{b}, {a, b},
{c}, {a, c},
{d}, {a, d},
{b, c}, {a, b, c},
{b, d}, {a, b, d},
{c, d}, {a, c, d},
{b, c, d}} {a, b, c, d}}

Extending the principle
What if P (0) isn’t true? Or isn’t interesting. We can start
from P (1) or P (2) and so on; even from P (−42).
Principle: The theorem of (simple) mathematical
induction (extended version).
• For any property P of the integers and n0 ∈ Z
∗ if P (n0) and
∗ for all k ∈ {n0, n0 + 1, ...}, if P (k) then P (k + 1)
∗ then ∀n ∈ {n0, n0 + 1, ...}, P (n)
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Example 3: Call a set of straight lines in a plane
“independent” if any two lines meet at a point and no
three lines meet at a point.
Theorem. For n ∈ {1, 2, ...} any set of n independent
lines divides the plane into n2+n+2

2

Proof
• The property of n is: Any set of n independent lines
divides the plane into n2+n+2

2 regions.
• Base step: Must show that 1 line divides the plane into
11+1+2
2 regions.

• Proof of base step: Clearly any line will divide the
plane into 2 parts. And 11+1+2

2 = 2.
• Induction step: Must show that, for all k ≥ 1, if any
set of k independent lines cuts the plane into k2+k+2

2
regions, then any set of k + 1 independent lines cuts
the plane into (k+1)2+(k+1)+2

2 regions.
• Proof of induction step:
∗ Let k be any integer ≥ 1.
∗ Assume (ind. hyp.) that any set independent lines
will cut the plane into k2+k+2

2 regions.
∗ Let S be any set of independent lines of size k + 1.
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∗ Let x be any line in S
∗ |S − {x}| = k

∗ Furthermore, since S is independent, S − {x} is an
independent set, so S − {x} will (by the ind. hyp.)
cut the plane into k2+k+2

2
regions.

∗ Now consider line x. It intersects each of the k other
lines, and thus cuts though k + 1 of the regions
defined by S − {x}, dividing each in two. (The k
points of intersection divide x into k + 1 segments.
Each segment cuts a region in 2.)
∗ So S defines k + 1 + k2+k+2

2 regions.
∗ Now

k + 1 +
k2 + k + 2

2

=
k2 + 3k + 4

2

=
(k + 1)2 + k + 3

2

=
(k + 1)2 + (k + 1) + 2

2
• So, by the theorem of simple mathematical induction
we have proved the theorem. ¤
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Complete Induction
We can use a stronger induction hypothesis.
This often make the proof much easier.
Principle The theorem of complete mathematical
induction:
• For any property P of the natural numbers
• If
∗ [Base step] P (0) and
∗ [Induction step] for all k ≥ 1
· if for all integers j, with 0 ≤ j < k, P (j)
· then P (k)

• then for all n ∈ N, P (n).
The induction hypothesis here is:
• “for all integers j, with 0 ≤ j < k, P (j)” .

‘Informal Proof’:
P (0) ∧ P (1) ∧ P (2) ∧ P (3) ∧ · · ·

⇔ P (0) ∧ (P (0)→ P (1))
∧ (P (0) ∧ P (1)→ P (2))
∧ (P (0) ∧ P (1) ∧ P (2)→ P (3)) ∧ · · ·
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Example 4
Consider the family of sequences defined by

pa,0 = 1

pa,n = a× pa,n−1 if n > 0 and n is odd
pa,n =

¡
pa,n/2

¢2 if n > 0 and n is even
(For each value for a we get a sequence pa,0, pa,1, ... )
Make a table or two:

a = 2

n p2,n
0 1
1 2
2 4
3 8
4 16

a = 3

n p3,n
0 1
1 3
2 9
3 27
4 81

Theorem: for all n ∈ N, a ∈ R, we have pa,n = an.

Note: For the purpose of this theorem we will consider
00 = 1.
Proof by complete induction.
• Let Q(n) mean that “for all a ∈ R, we have pa,n = an”
• Base step: We must show that Q(0). I.e. that for all
a ∈ R, we have pa,0 = a0”
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• Proof of base step:
∗ Let a be any real number.
∗ RHS = pa,0 = 1, by defn of p
∗ LHS = a0 = 1

• Induction step: We must show that, for all k > 0, if
Q(j), for all j ∈ {0, 1, .., k − 1} then Q(k). I.e. for all
k > 0, if

∀j ∈ {0, 1, .., k − 1},∀a ∈ R, pa,j = aj (*)
then

∀a ∈ R, pa,k = ak. (**)
• Proof of induction step
∗ Let k be any natural ≥ 1.
∗ Assume (as induction hypothesis) that

∀j ∈ {0, 1, .., k − 1},∀a ∈ R, pa,j = aj

∗ Remains to show ∀a ∈ R, pa,k = ak.
∗ Let a be any real number.
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∗ Case that k is odd:
· Then we know pa,k = a× pa,k−1
· Note that 0 ≤ k − 1 < k.
·We have

pa,k
= a× pa,k−1Defn of p
= a× ak−1 Ind. Hyp.
= ak

∗ Case that k is even:
· Then by definition pa,k =

¡
pa,k/2

¢2
· Note that k/2 is an integer and 0 ≤ k/2 < k.
·We have

pa,k

=
¡
pa,k/2

¢2 Defn of p
=
³
ak/2

´2
Ind. Hyp.

= ak

• So, by the theorem of complete mathematical induc-
tion, we have the theorem. ¤
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Extending Complete Induction
We can be a bit more general than this, allowing the base
case to start anywhere and for multiple base cases.
Principle The theorem of complete induction (extended
version)
• For any n0 and n1 in Z with n0 ≤ n1 and property P of
the integers

• If
∗ [Base steps] P (n0) and P (n0 + 1) and ... and
P (n1 − 1) and
∗ [Induction step] for all integers k ≥ n1
· if for all integers j, with n0 ≤ j < k, P (j)
· then P (k)

• then, for all n ∈ {n0, n0 + 1, ...}, P (n).
Here there are n1 − n0 base steps. Note that there can
even be 0 base steps.
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‘Informal Proof’ n0 = 0 and n1 = 2
P (0) ∧ P (1) ∧ P (2) ∧ P (3) ∧ · · ·

⇔ P (0) ∧ P (1) ∧ (P (0) ∧ P (1)→ P (2))
∧ (P (0) ∧ P (1) ∧ P (2)→ P (3)) ∧ · · ·

Example 5
Define the following “Fibonacci” sequence

fib0 = 1

fib1 = 1

fibn = fibn−1 + fibn−2, if n > 1

The Fibonacci sequence is
h1, 1, 2, 3, 5, 8, 13, 21, 34, 55, · · · i
Theorem: For all natural numbers n, fibn = can + dbn

where

c =
5 +
√
5

10
d =

5−√5
10

and

a =
1 +
√
5

2
' 1.61803 b =

1−√5
2

' −0.61803
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Note. At the moment this theorem appears from “thin
air”. Later in the course, we will develop a method for
deriving this and similar theorems.
Note.
• The numbers a and b are the two solutions to the
equation

1

x
= x− 1

as you can see by the quadratic formula.
• The number a is often written as φ and is called the
“golden ratio”.

• The number b is often written φ0 or as 1− φ.
• One consequence of the theorem is

lim
n→∞

fibn+1
fibn

= φ
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Lemma: 1
a
+ 1

a2
= 1 = 1

b
+ 1

b2

Proof of lemma:
1

a
+
1

a2
=
1

a
+
1

a
(a− 1) = (a− 1 + 1)1

a
= a

1

a
= 1

And similarly for b. ¤
Remark:Why this lemma? In actuality, I was most of the
way through the proof of the theorem before I realized
that this lemma would be useful. For presentation
reasons it is convenient to prove it first.

Proof of theorem: By complete induction with 2 base
cases.
The property P (n) is “fibn = can + dbn”
First base step: for n = 0. We must show fib0 = ca0+db0
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Proof of first base step
ca0 + db0

= c + d

=

¡
5 +
√
5
¢
+
¡
5−√5¢

10

=
10

10
= 1

= fib0 by defn
Second base step: for n = 1. We must show
fib1 = ca1 + db1

Proof of second base step
ca1 + db1

=
5 +
√
5

10
· 1 +

√
5

2
+
5−√5
10

· 1−
√
5

2

=

¡
5 +
√
5
¢ ¡
1 +
√
5
¢
+
¡
5−√5¢ ¡1−√5¢

20

=
5 + 6

√
5 + 5 + 5− 6√5 + 5

20
= 20/20

= 1

Typeset October 20, 2004 24



Discrete Math. for Engineering, 2004. Notes 6. Induction Theodore Norvell, Memorial University

Inductive step: We must show that for all integers k ≥ 2,
if, for all integers j, with 0 ≤ j < k, P (j), then P (k).
• Let k be any integer ≥ 2.
• Assume (as the ind. hyp.) that

for all j with 0 ≤ j < k, fibj = caj + dbj

• In particular (as k ≥ 2) the ind. hyp. implies that
fibk−1 = cak−1 + dbk−1 (*)

and that
fibk−2 = cak−2 + dbk−2 (**)

• It remains to show that fibk = cak + dbk

fibk = fibk−1 + fibk−2 Defn of fib as k ≥ 2
= cak−1 + dbk−1 + cak−2 + dbk−2 From (*) and (**)
= c

¡
ak−1 + ak−2

¢
+ d

¡
bk−1 + bk−2

¢
Distributivity

= c

µ
ak

a
+
ak

a2

¶
+ d

µ
bk

b
+
bk

b2

¶
= cak

µ
1

a
+
1

a2

¶
+ dbk

µ
1

b
+
1

b2

¶
Distributivity

= cak + dbk Lemma.

So, by the theorem of complete mathematical induction,
we have proved the theorem. ¤
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