Induction

Properties. A property of natural numbers is a function from the natural numbers to $\{T, F\}$.

Examples

- \bullet Being odd: Define odd(n) to mean that natural number n is odd
- Being prime: Define prime(n) to mean that n is prime
- Triangular sum. Define tri(n) to mean

$$\left(\sum_{i=0}^{n} i\right) = \frac{n(n+1)}{2}$$

Of these odd and prime are not true of all natural numbers, but tri is true of all natural numbers

- $\bullet \ \neg \forall n \in \mathbb{N}, prime(n)$
- $\forall n \in \mathbb{N}, tri(n)$

Simple Induction

Suppose we know for a property P of the natural numbers that

- (a) P is true of 0.
- (b) that for any k in \mathbb{N} , if the property is true of k, then it is also true of k + 1.

Then

- \bullet From (a) we know P(0) is true
- \bullet From (b) and P(0), we know P(1) is true
- From (b) and P(1), we know P(2) is true
- From (b) and P(2), we know P(3) is true
- and so on ad infinitum.

In fact it must be that P(n) is true for all $n \in \mathbb{N}$.

Theodore Norvell, Memorial University

Example 0

Consider the property of n that $(\sum_{i=0}^{n} i) = \frac{n(n+1)}{2}$. We define

$$tri(n)$$
 iff $\left(\sum_{i=0}^{n} i\right) = \frac{n(n+1)}{2}$

• (a) (Base Step) We can confirm that tri(0) is true by plugging in the numbers

$$LHS = \left(\sum_{i=0}^{n} i\right) \left[n := 0\right] = \left(\sum_{i=0}^{0} i\right) = 0$$

and

$$RHS = \frac{n(n+1)}{2}[n := 0] = \frac{0(0+1)}{2} = 0 = LHS$$

- (b) (Induction Step) We can show that, for any k in \mathbb{N} , if tri(k), then tri(k+1)* Proof
 - \cdot Let k be any natural number
 - \cdot Assume tri is true of that k. I.e.

$$\left(\sum_{i=0}^{k} i\right) = \frac{k(k+1)}{2}$$

(This assumption is called the induction hypothesis) · It remains to show tri(k+1)· Calculate $\sum i$ $= k + 1 + \sum_{i=1}^{k} i$ Split off last term. $= k+1+\frac{k(k+1)}{2}$ By our assumption $=\frac{2k+2+k^2+k}{2}$ $=\frac{k^2+3k+2}{2}$ $=\frac{(k+\bar{1})(k+2)}{2}$ \cdot Thus tri(k+1) is true .

Now we have

- * tri(0) by the base step
- * tri(1) by the induction step and tri(0)
- * tri(2) by the induction step and tri(1)

* and so on

• In fact we have $\forall n \in \mathbb{N}, tri(n)$. That is $\forall n \in \mathbb{N}, \left(\sum_{i=0}^{n} i\right) = \frac{n(n+1)}{2}$

The Theorem of Mathematical Induction

Principle: The *"theorem of (simple) mathematical induction"* states that

- For any property P of the natural numbers we have $\forall n \in \mathbb{N}, P(n)$ if * P(0), and
 - * for all $k \in \mathbb{N}$, if P(k) then P(k+1)

Notes

- \bullet The antecedent P(k) is called the "induction hypothesis" (Ind. Hyp.)
- Proof is based on the WOP. See book.
- In applying this theorem
 - * P(0) is called the "base step"
 - * $\forall k \in \mathbb{N}, P(k) \rightarrow P(k+1)$ is called the "inductive step"

Informal "proof": Recall that $P \land Q \Leftrightarrow P \land (P \rightarrow Q)$

• In the infinite case we have

$$P(0) \land P(1) \land P(2) \land \cdots$$

$$\Leftrightarrow P(0) \land (P(0) \to P(1)) \land (P(1) \to P(2)) \land \cdots$$

A proof by the theorem of (simple) mathematical induction answers the following questions

- (a) What is the property of the natural numbers?
- (b) What do we need to prove for the base step?
- (c) What is a proof of the base step?
- (d) What do we need to prove for the inductive step?
- (e) What is a proof of the inductive step?

Example 1

We will show that, for all $n \in \mathbb{N}$,

$$\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6$$

Proof:

(a) Let P(n) be the property of a natural number n that $\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6$

• (b) Base Step: We need to show P(0), i.e.

$$\sum_{i=1}^{0} i^2 = 0(0+1)(0n+1)/6$$

* (c) Proof of Base Step: The LHS is 0 since the sum

Typeset October 20, 2004

of 0 things is always 0. The RHS simplifies to 0. Thus ${\cal P}(0)$ holds.

• (d) Induction Step. We need to show that $\forall k \in \mathbb{N}$, if

$$\sum_{i=1}^{k} i^2 = k(k+1)(2k+1)/6 \tag{*}$$

then

$$\sum_{i=1}^{k+1} i^2 = (k+1)((k+1)+1)(2(k+1)+1)/6 \qquad (**)$$

- * (e) Proof of Induction Step
- * Let k be any natural number.
- * Assume (Induction Hypothesis)

$$\sum_{i=1}^{k} i^2 = k(k+1)(2k+1)/6$$

* We need to show (**).

$$LHS = \sum_{i=1}^{k+1} i^{2}$$

$$= (k+1)^{2} + \sum_{i=1}^{k} i^{2} \text{ Split off last term}$$

$$= (k+1)^{2} + k(k+1)(2k+1)/6 \text{ By the ind. hyp. (*)}$$

$$= k^{2} + 2k + 1 + \frac{(k^{2} + k)(2k+1)}{6} \text{ Expand}$$

$$= k^{2} + 2k + 1 + \frac{2k^{3} + 3k^{2} + k}{6} \text{ Expand}$$

$$= \frac{2k^{3} + 9k^{2} + 13k + 6}{6} \text{ Put over common denom.}$$

*

$$= \frac{RHS}{(k+1)((k+1)+1)(2(k+1)+1)}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6} \text{ Adding}$$

$$= \frac{(k^2+3k+2)(2k+3)}{6} \text{ Expand}$$

$$= \frac{2k^3+9k^2+13k+6}{6} \text{ Expand}$$
* Thus we have (**)

• By the theorem of mathematical induction we have $\forall n \in \mathbb{N}, P(n)$.I.e. for all natural n,

$$\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6$$

Example 2 If $|S| \in \mathbb{N}$ then $|\mathcal{P}(S)| = 2^{|S|}$.

Recall that $\mathcal{P}(S)$ is the set of all subsets of S

Proof:

- (a) Let P(n) (for $n \in \mathbb{N}$) mean: for all sets S, if |S| = n then $|\mathcal{P}(S)| = 2^{n|}$
- We must show $\forall n \in \mathbb{N}$, for all sets S, if |S| = n then $|\mathcal{P}(S)| = 2^n$
- (b) Base Step: We must show that all sets of cardinality
 0 have a power set of size 2⁰.
- (c) Proof of Base step:
 - * There is only one set of size 0 namely \emptyset . The power set of \emptyset is $\{\emptyset\}$ and has size 1, which equals 2^0
- (d) Induction Step: We must show that, for all k ∈ N, if all sets of size k have a power set of size 2^k, then all sets of size k + 1 have a power set of size 2^{k+1}.
- (e) *Proof of induction step:*
 - * Let k be any natural number.
 - * Assume (as Induction Hypothesis) that all sets of size k have a power set of size 2^k .

- * Remains to prove: All sets of size k + 1 have power sets of size 2^{k+1}
- * Let S be any set of size k + 1.
- * Let x be any member of S.
- * We can partition $\mathcal{P}(S)$ into two disjoint sets $Q = \{T \subseteq S \mid x \notin T\}$ and $R = \{T \subseteq S \mid x \in T\}$.
- * Note. $\mathcal{P}(S) = Q \cup R$ and $Q \cap R = \emptyset$ So $|\mathcal{P}(S)| = |Q| + |R|$.
- * Also note that each element of R can be obtained from an element of Q by "unioning in" x.
- * And each element of Q can be obtained from an element of R by "subtracting out" x.
- * So |Q| = |R|.
- * Finally note that $Q = \mathcal{P}(S \{x\})$ and since $|S - \{x\}| = k$ we have (by the ind. hyp.) $|Q| = 2^k$ * $|\mathcal{P}(S)| = |Q| + |R| = 2 \times |Q| = 2 \times 2^k = 2^{k+1}$
- By the theorem of mathematical induction $\forall n \in \mathbb{N}$, for all sets *S*, if |S| = n then $|\mathcal{P}(S)| = 2^n$

Example of the construction of Q and R

Theodore Norvell, Memorial University

 $S = \{a, b, c, d\}$ If x = a then we have $\frac{Q \quad R}{\{\emptyset \quad \{\{a\}, \\ \{b\}, \quad \{a, b\}, \\ \{c\}, \quad \{a, c\}, \\ \{d\}, \quad \{a, d\}, \\ \{b, c\}, \quad \{a, b, c\}, \\ \{b, d\}, \quad \{a, b, c\}, \\ \{b, d\}, \quad \{a, c, d\}, \\ \{b, c, d\}\} \quad \{a, b, c, d\}\}}$

Extending the principle

What if P(0) isn't true? Or isn't interesting. We can start from P(1) or P(2) and so on; even from P(-42).

Principle: The theorem of (simple) mathematical induction (extended version).

• For any property P of the integers and $n_0 \in \mathbb{Z}$ * if $P(n_0)$ and

* for all
$$k \in \{n_0, n_0 + 1, ...\}$$
, if $P(k)$ then $P(k+1)$

* then $\forall n \in \{n_0, n_0 + 1, ...\}, P(n)$

Typeset October 20, 2004

Example 3: Call a set of straight lines in a plane "independent" if any two lines meet at a point and no three lines meet at a point.

Theorem. For $n \in \{1, 2, ...\}$ any set of n independent lines divides the plane into $\frac{n^2+n+2}{2}$

Proof

- The property of *n* is: Any set of *n* independent lines divides the plane into $\frac{n^2+n+2}{2}$ regions.
- Base step: Must show that 1 line divides the plane into $\frac{1^1+1+2}{2}$ regions.
- Proof of base step: Clearly any line will divide the plane into 2 parts. And $\frac{1^1+1+2}{2} = 2$.
- Induction step: Must show that, for all $k \ge 1$, if any set of k independent lines cuts the plane into $\frac{k^2+k+2}{2}$ regions, then any set of k+1 independent lines cuts the plane into $\frac{(k+1)^2+(k+1)+2}{2}$ regions.
- Proof of induction step:
 - * Let k be any integer ≥ 1 .
 - * Assume (ind. hyp.) that any set independent lines will cut the plane into $\frac{k^2+k+2}{2}$ regions.
 - * Let S be any set of independent lines of size k + 1.

 \ast Let x be any line in S

$$|S - \{x\}| = k$$

- * Furthermore, since *S* is independent, $S \{x\}$ is an independent set, so $S \{x\}$ will (by the ind. hyp.) cut the plane into $\frac{k^2+k+2}{2}$ regions.
- * Now consider line x. It intersects each of the k other lines, and thus cuts though k + 1 of the regions defined by $S - \{x\}$, dividing each in two. (The kpoints of intersection divide x into k + 1 segments. Each segment cuts a region in 2.)

* So S defines
$$k + 1 + \frac{k^2 + k + 2}{2}$$
 regions.

* Now

$$k + 1 + \frac{k^2 + k + 2}{2}$$

$$= \frac{k^2 + 3k + 4}{2}$$

$$= \frac{(k+1)^2 + k + 3}{2}$$

$$= \frac{(k+1)^2 + (k+1) + 2}{2}$$

 So, by the theorem of simple mathematical induction we have proved the theorem.

Typeset October 20, 2004

Complete Induction

We can use a stronger induction hypothesis.

This often make the proof much easier.

Principle The theorem of complete mathematical induction:

- For any property P of the natural numbers
- If
 - * [Base step] P(0) and
 - * [Induction step] for all $k \ge 1$
 - \cdot if for all integers j, with $0 \leq j < k$, P(j)
 - \cdot then P(k)
- then for all $n \in \mathbb{N}, P(n)$.

The induction hypothesis here is:

 \bullet "for all integers j, with $0 \leq j < k,$ P(j) " .

'Informal Proof':

$$P(0) \land P(1) \land P(2) \land P(3) \land \cdots$$

$$\Leftrightarrow P(0) \land (P(0) \to P(1))$$

$$\land (P(0) \land P(1) \to P(2))$$

$$\land (P(0) \land P(1) \land P(2) \to P(3)) \land \cdots$$

Example 4

Consider the family of sequences defined by

$$p_{a,0} = 1$$

 $p_{a,n} = a \times p_{a,n-1}$ if $n > 0$ and n is odd
 $p_{a,n} = (p_{a,n/2})^2$ if $n > 0$ and n is even

(For each value for a we get a sequence $p_{a,0}$, $p_{a,1}$, ...) Make a table or two:

n	$p_{2,n}$	n	$p_{3,n}$
0	1	0	1
1	2	$a = 3 \frac{1}{2}$	3
$a = 2 \frac{1}{2}$	4	a = 3 2	9
3	8	3	27
4	16	4	81

Theorem: for all $n \in \mathbb{N}$, $a \in \mathbb{R}$, we have $p_{a,n} = a^n$.

Note: For the purpose of this theorem we will consider $0^0 = 1$.

Proof by complete induction.

- Let Q(n) mean that "for all $a \in \mathbb{R}$, we have $p_{a,n} = a^n$ "
- Base step: We must show that Q(0). I.e. that for all $a \in \mathbb{R}$, we have $p_{a,0} = a^{0}$ "

- Proof of base step:
 - * Let a be any real number.
 - $* RHS = p_{a,0} = 1$, by defn of p
 - $* LHS = a^0 = 1$
- Induction step: We must show that, for all k > 0, if Q(j), for all $j \in \{0, 1, .., k 1\}$ then Q(k). I.e. for all k > 0, if

$$\forall j \in \{0, 1, .., k-1\}, \forall a \in \mathbb{R}, p_{a,j} = a^j$$
 (*)

then

$$\forall a \in \mathbb{R}, p_{a,k} = a^k. \tag{**}$$

- Proof of induction step
 - * Let k be any natural ≥ 1 .
 - * Assume (as induction hypothesis) that

$$\forall j \in \{0, 1, \dots, k-1\}, \forall a \in \mathbb{R}, p_{a,j} = a^j$$

- * Remains to show $\forall a \in \mathbb{R}, p_{a,k} = a^k$.
- * Let a be any real number.

Theodore Norvell, Memorial University

* Case that k is odd:

- \cdot Then we know $p_{a,k} = a \times p_{a,k-1}$
- Note that $0 \le k 1 < k$.
- · We have

$$p_{a,k}$$

$$= a \times p_{a,k-1} \text{Defn of } p$$

$$= a \times a^{k-1} \text{ Ind. Hyp.}$$

$$= a^k$$

* Case that k is even:

- · Then by definition $p_{a,k} = (p_{a,k/2})^2$
- Note that k/2 is an integer and $0 \le k/2 < k$.

· We have

$$p_{a,k}$$

= $(p_{a,k/2})^2$ Defn of p
= $(a^{k/2})^2$ Ind. Hyp.
= a^k

 So, by the theorem of complete mathematical induction, we have the theorem.

Extending Complete Induction

We can be a bit more general than this, allowing the base case to start anywhere and for multiple base cases.

Principle The theorem of complete induction (extended version)

- For any n_0 and n_1 in \mathbb{Z} with $n_0 \leq n_1$ and property P of the integers
- If
 - * [Base steps] $P(n_0)$ and $P(n_0+1)$ and \ldots and $P(n_1-1)$ and
 - * [Induction step] for all integers $k \ge n_1$
 - · if for all integers j, with $n_0 \leq j < k$, P(j)
 - \cdot then P(k)
- then, for all $n \in \{n_0, n_0 + 1, ...\}, P(n)$.

Here there are $n_1 - n_0$ base steps. Note that there can even be 0 base steps.

Theodore Norvell, Memorial University

'Informal Proof'
$$n_0 = 0$$
 and $n_1 = 2$
 $P(0) \land P(1) \land P(2) \land P(3) \land \cdots$
 $\Leftrightarrow P(0) \land P(1) \land (P(0) \land P(1) \rightarrow P(2))$
 $\land (P(0) \land P(1) \land P(2) \rightarrow P(3)) \land \cdots$

Example 5

Define the following "Fibonacci" sequence

$$fib_0 = 1$$

 $fib_1 = 1$
 $fib_n = fib_{n-1} + fib_{n-2}$, if $n > 1$

The Fibonacci sequence is $\langle 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \cdots \rangle$

Theorem: For all natural numbers n, $fib_n = ca^n + db^n$ where

$$c = \frac{5 + \sqrt{5}}{10} \qquad d = \frac{5 - \sqrt{5}}{10}$$
$$= \frac{1 + \sqrt{5}}{2} \simeq 1.61803 \qquad b = \frac{1 - \sqrt{5}}{2} \simeq -0.61803$$

Typeset October 20, 2004

and

a

Note. At the moment this theorem appears from "thin air". Later in the course, we will develop a method for deriving this and similar theorems.

Note.

• The numbers a and b are the two solutions to the equation

$$\frac{1}{x} = x - 1$$

as you can see by the quadratic formula.

- The number a is often written as ϕ and is called the "golden ratio".
- The number b is often written ϕ' or as 1ϕ .
- One consequence of the theorem is

$$\lim_{n \to \infty} \frac{fib_{n+1}}{fib_n} = \phi$$

Theodore Norvell, Memorial University

Lemma: $\frac{1}{a} + \frac{1}{a^2} = 1 = \frac{1}{b} + \frac{1}{b^2}$ Proof of lemma: $\frac{1}{a} + \frac{1}{a^2} = \frac{1}{a} + \frac{1}{a}(a-1) = (a-1+1)\frac{1}{a} = a\frac{1}{a} = 1$ And similarly for *b*.

Remark: Why this lemma? In actuality, I was most of the way through the proof of the theorem before I realized that this lemma would be useful. For presentation reasons it is convenient to prove it first.

Proof of theorem: By complete induction with 2 base cases.

The property P(n) is " $fib_n = ca^n + db^n$ " First base step: for n = 0. We must show $fib_0 = ca^0 + db^0$

Theodore Norvell, Memorial University

Proof of first base step $ca^{0} + db^{0}$ = c + d $= \frac{(5 + \sqrt{5}) + (5 - \sqrt{5})}{10}$ $= \frac{10}{10}$ = 1 $= fib_{0} \text{ by defn}$

Second base step: for n = 1. We must show $fib_1 = ca^1 + db^1$

Proof of second base step

$$= \frac{ca^{1} + db^{1}}{5 + \sqrt{5}} + \frac{5 - \sqrt{5}}{10} \cdot \frac{1 - \sqrt{5}}{2}$$

$$= \frac{(5 + \sqrt{5})(1 + \sqrt{5}) + (5 - \sqrt{5})(1 - \sqrt{5})}{20}$$

$$= \frac{5 + 6\sqrt{5} + 5 + 5 - 6\sqrt{5} + 5}{20}$$

$$= 20/20$$

$$= 1$$

Typeset October 20, 2004

Inductive step: We must show that for all integers $k \ge 2$, if, for all integers j, with $0 \le j < k$, P(j), then P(k).

- Let k be any integer ≥ 2 .
- Assume (as the ind. hyp.) that for all j with $0 \le j < k$, $fib_j = ca^j + db^j$
- In particular (as $k \ge 2$) the ind. hyp. implies that $fib_{k-1} = ca^{k-1} + db^{k-1}$

and that

$$fib_{k-2} = ca^{k-2} + db^{k-2}$$
 (**)

• It remains to show that $fib_k = ca^k + db^k$

$$\begin{aligned} fib_k &= fib_{k-1} + fib_{k-2} \text{ Defn of } fib \text{ as } k \ge 2 \\ &= ca^{k-1} + db^{k-1} + ca^{k-2} + db^{k-2} \text{ From (*) and (**)} \\ &= c\left(a^{k-1} + a^{k-2}\right) + d\left(b^{k-1} + b^{k-2}\right) \text{ Distributivity} \\ &= c\left(\frac{a^k}{a} + \frac{a^k}{a^2}\right) + d\left(\frac{b^k}{b} + \frac{b^k}{b^2}\right) \\ &= ca^k \left(\frac{1}{a} + \frac{1}{a^2}\right) + db^k \left(\frac{1}{b} + \frac{1}{b^2}\right) \text{ Distributivity} \\ &= ca^k + db^k \text{ Lemma.} \end{aligned}$$

So, by the theorem of complete mathematical induction, we have proved the theorem. $\hfill\square$

Typeset October 20, 2004

(*)