Functions and Relations

Reading 12.1, 12.2, 12.3

Recall Cartesian products and pairs: E.g. $\{1,2,3\} \times \{T,F\}$

$$\{(1,T),(1,F),(2,T),(2,F),(3,T),(3,F)\}$$

What is a function?

Informal Defn. A function is a rule that, for each member of one set (the domain), identifies a single member of another set (the range).

Definition: A binary relation R consists of 3 things

- a set dom(R), called its *domain*
- a set rrg(R), called its *range*
- a set graph(R), called its *graph*. Such that
 - * the graph is set of pairs with the first member from $\mathrm{dom}(R)$ and the second from $\mathrm{rng}(R)$. I.e.

$$graph(f) \subseteq dom(R) \times rng(R)$$

Example: $dom(R) = \{1, 2, 3, 4\} \operatorname{rng}(R) = \{1, 2, 3, 4\}$

• graph $(R) = \{(1,1), (2,2), (3,2), (3,3)\}$

Example: $dom(R) = rng(R) = \mathbb{R}$

• $(x,y) \in \operatorname{graph}(R)$ iff $x^2 + y^2 = 1$.

Discrete Math. for Engineering, 2004. Notes 8. Functions and Relations

Notation: We write xRy to mean $(x,y) \in \operatorname{graph}(R)$. The text writes $(x,y) \in R$ to mean the same.

Definition: A partial function f is a relation such that each member of the domain appears at most once as the first member of a pair in the graph:

$$(x, y_0) \in \operatorname{graph}(f) \land (x, y_1) \in \operatorname{graph}(f) \rightarrow y_0 = y_1$$
, for all x, y_0, y_1

Definition: A *total relation* f is a relation such that each member of the domain appears at least once as the first member of a pair in the graph:

$$\forall x \in \text{dom}(f), \exists y \in \text{rng}(f), (x, y) \in \text{graph}(f)$$

Definition: A *function* f is a relation such that each member of the domain appears at exactly once as the first member of a pair in the graph.

This last requirement can be formalized into two parts

- f is a partial function
- *f* is a total relation.

Note: Every function is a partial function and every partial function is a relation.

Notation:

Theodore Norvell, Memorial University

• We write $f: D \to R$ to mean f is a function with dom(f) = D and rng(f) = R.

- We write $f: D \leadsto R$ to mean f is a partial function with dom(f) = D and rng(f) = R.
- ullet And if f is a partial function or a function, we write f(x)=y to mean $(x,y)\in\operatorname{graph}(f)$

Note: The text does not mention the graph and simply writes $(x, y) \in R$ where I'm writing $(x, y) \in \operatorname{graph}(R)$.

Example: function

- $f1: \{0,1,2,3\} \to \{T,F\}$
- graph $(f1) = \{(0,T), (1,F), (2,T), (3,F)\}$

Example: function

- $f2: \{0,1,2,3\} \rightarrow \{0,1,...,6\}$
- graph $(f2) = \{(0,0), (1,2), (2,4), (3,6)\}$

Example: function

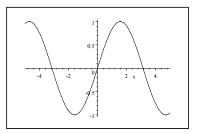
 $\bullet \sin : \mathbb{R} \to \mathbb{R}$

Typeset November 19, 2004

• $(x, y) \in \operatorname{graph}(\sin)$ iff $y = \sin(x)$

Discrete Math. for Engineering, 2004. Notes 8. Functions and Relations

Theodore Norvell, Memorial University



Example: relation

- $dom(f3) = \{0, 1, 2, 3\}, rng(f3) = \{T, F\}$
- graph $(f3) = \{(0,T), (1,F), (2,T), (3,F), (0,F)\}$

Example: partial function

- $f4: \{0,1,2,3\} \rightsquigarrow \{0,1,...,6\}$
- graph $(f4) = \{(0,0), (1,2), (2,4)\}$

Example: function

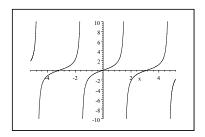
- $f5: (-\pi/2, \pi/2) \to \mathbb{R}$
- $f5(x) = \tan(x)$

Example: partial function

• $tan : \mathbb{R} \leadsto \mathbb{R}$

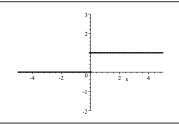
Typeset November 19, 2004

3



Example: partial function. The step function.

- $f6: \mathbb{R} \leadsto \mathbb{R}$
- graph $(f6) = \{(x,0) \mid x \in \mathbb{R} \land x < 0\} \cup \{(x,1) \mid x \in \mathbb{R} \land x > 0\}$



Discrete Math. for Engineering, 2004. Notes 8. Functions and Relations

Theodore Norvell, Memorial University

Inversion, one-one, and onto

Definition: The *inverse* of a relation R is a relation R^{-1} such that

- $\operatorname{dom}(R^{-1}) = \operatorname{rng}(R)$
- $\operatorname{rng}(R^{-1}) = \operatorname{dom}(R)$
- graph $(R^{-1}) = \{(y, x) \mid (x, y) \in \text{graph}(R)\}$

Note that $(R^{-1})^{-1} = R$

Example: Consider the relation P for parent. xPy if x is y's parent

- Consider $C = P^{-1}$
- ullet Then yCx is true only if x is y's parent
- What is C in English?

Note that the inverse of a function may or may not be a function.

Example: Consider

- $f1: \{0, 1, 2, 3\} \rightarrow \{T, F\}$
- graph $(f1) = \{(0,T), (1,F), (2,T), (3,F)\}$
- Then graph $(f1^{-1}) = \{(T,0), (T,2), (F,1), (F,3)\}$

5

ullet This can not be the graph of a function, since T (for example) occurs twice as a the first item of a pair.

Example: Consider

- $f2: \{0,1,2,3\} \rightarrow \{0,1,...,6\}$
- graph $(f2) = \{(0,0), (1,2), (2,4), (3,6)\}$
- Then $\operatorname{graph}(f2^{-1})$ is $\{(0,0),(2,1),(4,2),(6,3)\}$. But the domain of $f2^{-1}$ is $\{0,1,...,6\}$ so the 1 (for example) does not occur as the first member of a pair.
- $f2^{-1}$ is a partial function.

Which relations have inverses that are functions?

Definition: A relation is *one-one* if every member of the range appears at most once as the second member of some pair in the graph.

Theorem:

- The inverse of a one-one relation is a partial function.
- The inverse of a partial function is a one-one relation.

Definition: A relation is *onto* if every member of the range appears at least once as the second member of some pair in the graph.

Theorem:

- The inverse of an onto relation is a total relation.
- The inverse of a total relation is an onto relation.

Theorem:

- The inverse of a one-one and onto relation is a function.
- And the inverse of a function is a one-one and onto relation.

Corollary: The inverse of a one-one and onto function is a one-one and onto function.

Example:

- $f7: \mathbb{Z} \to \mathbb{Z}$, graph $(f7) = \{(n, n+10) \mid n \in \mathbb{Z}\}$
- This function is one-one and onto.
- Its inverse is a function $f7^{-1}: \mathbb{Z} \to \mathbb{Z}$, $\operatorname{graph}(f7^{-1}) = \{(n, n-10) \mid n \in \mathbb{Z}\}$

Example: Consider a function from 16 bit strings to 16 bit strings which swaps the first and second byte of the string

•
$$swap: \{F, T\}^{16} \to \{F, T\}^{16}$$

• $swap(\langle b_{15}, b_{14}, b_{13}, b_{12}, b_{11}, b_{10}, b_{9}, b_{8}, b_{7}, b_{6}, b_{5}, b_{4}, b_{3}, b_{2}, b_{1}, b_{0} \rangle)$ = $\langle b_{7}, b_{6}, b_{5}, b_{4}, b_{3}, b_{2}, b_{1}, b_{0}, b_{15}, b_{14}, b_{13}, b_{12}, b_{11}, b_{10}, b_{9}, b_{8} \rangle$

• This one-one onto function is its own inverse. $swap^{-1} = swap$.

Identity and composition

Identity function. For each set A, the function $id_A:A\to A$ maps each element or A to itself.

$$id_A(x) = x$$
, for all $x \in A$

Composition.

Consider the relation P for parent. xPy iff x is y's parent

- Define a relation Q so that xQy iff there is a z such that zPx and zPy.
- What is Q in English?

Consider the relation xQy meaning x is y's sibling

- Define relation K so that xKy iff there is are w and z such that wPy and wQz and zPx.
- What is *K* in English?

Defn: Suppose rrg(R) = dom(S). The *composition of* S *following* R, written $S \circ R$ is a relation such that

 $\bullet \ \mathrm{dom}(S \circ R) = \mathrm{dom}(R)$

Discrete Math. for Engineering, 2004. Notes 8. Functions and Relations

- $\operatorname{rng}(S \circ R) = \operatorname{rng}(S)$
- ullet graph $(S \circ R)$ is such that

 $(x (S \circ R) y \text{ iff } \exists z, xRz \land zSy) \text{, for all } x \in \text{dom}(R), y \in \text{rng}(S)$

Example: $Q = P \circ P^{-1}$

Example: $K = P \circ Q \circ P^{-1}$

Example: Suppose that f and g are functions, then

$$(f \circ g)(x) = f(g(x)), \text{ for all } x \in \text{dom}(g)$$

Note that \circ is associative and has identity id and the empty relation is a dominator.

$$T \circ (S \circ R) = (T \circ S) \circ R$$
$$R \circ id = R = id \circ R$$
$$R \circ \emptyset = \emptyset = \emptyset \circ R$$

In general ∘ is not commutative, nor is it idempotent.

 $S \circ R$ may not equal $R \circ S$ $R \circ R$ may not equal R

Suppose that a relation R has dom(R) = rng(R) = A.

11

ullet Then R^0 is id_A

 $\bullet R^1 = R$

 $\bullet R^2 = R \circ R$

 $\bullet \ R^3 = R \circ R \circ R$

• Etc.

Example: Suppose that xRy means that two nodes in a network are directly connected (1 hop)

- Then $x(R \circ R)y$ means that x and y are connected by 2 hops.
- and $id \cup R \cup (R \circ R)$ means¹ that 2 nodes are connected by 0, 1, or 2 hops.
- ullet Define $R^0=id,\,R^1=R$, $R^n=(R\circ R^{n-1})$ for $n\geq 1$
- Then $R^0 \cup R^1 \cup R^2 \cup \cdots$ is a relation that indicates whether two computers are connected by any number of hops.
- This is called the reflexive and transitive closure of *R*.
- ullet The notation is R^*

We can compute the reflexive and transitive closure of ${\cal R}$ as follows

```
T:=id_A \text{ ; } \text{ // Where } \operatorname{dom}(R)=\operatorname{rng}(R)=A U:=id_A i:=0 \text{ ;} \text{// Invariant: } T=\bigcup_{j\in\{0,1,\ldots,i\}} R^j \text{ and } U=R^i \text{while( true ) } \{ U:=U\circ R \text{ ;} \text{if( } U\subseteq T \text{ ) break ;} T:=U\cup T \text{ ;} i:=i+1 \text{ } \}
```

Discrete Math. for Engineering, 2004. Notes 8. Functions and Relations

This is very useful, for example, to determine if a network is fully connected.

¹ The union of relations is the relation formed by unioning the domains, ranges, and graphs.

13

Relational Databases

Currently most database management systems are based on the "relational model".

Examples include, Access, Oracle, and MySQL.

Tables and Databases

A *table* (or n-ary relation) R has

- A tuple of n distinct attribute names $\operatorname{attr}(R) = (c_0, c_1, ... c_{n-1})$
- n domain sets $dom(R) = (D_0, D_1, \cdots, D_{n-1})$
- graph $(R) \subseteq D_0 \times D_1 \times \cdots \times D_{n-1}$

We can visualize a table as a matrix in which

- each column has a name and is associated with a set of potential values
- no row is repeated
- the order of the rows does not matter

Examples:

Personnel

personnel-num		salary	
001	Sue King	100000	001
002	Fong Ping	40000	001
999	Bob Will	20000	001

Projects:

Name	Assigned	Completion-date
Snipe	001	2003-12-31
Snipe	999	2003-12-31
Snark	999	2004-01-31

A relational database is

- a set of m table names $\{t_0, t_1, ..., t_{m-1}\}$
- ullet m tables indexed by name $T_{t_0},\,T_{t_1},...,T_{t_{m-1}}$

Example: The set of table names is $\{personnel, projects\}$ and the tables $T_{personnel}$ and $T_{projects}$ are the tables above.

Query operations on data bases

Query operations: projection, attribute renaming, selection, join.

Projection:

- Given a tuple $p=(v_0,v_1,\cdots v_{n-1})$ from a table T with attributes $(c_0,c_1,...c_{n-1})$. Consider a sequence of distinct attributes $a'=(c_{i_0},c_{i_1},...,c_{i_{k-1}})$
 - * define the *projection* of p onto a' (written $p[(c_{i_0}, c_{i_1}, ..., c_{i_{k-1}})]$) to be the tuple $(v_{i_0}, v_{i_1}, ..., v_{i_{k-1}})$
- ullet For a table T define the *projection* of T onto a' as a table T' with
 - * attributes a'
 - * domains $(D_{i_0}, D_{i_1}, \cdots, D_{i_{k-1}})$
 - * graph

$$\{p[(c_{i_0}, c_{i_1}, ..., c_{i_{k-1}})] \mid p \in \operatorname{graph}(R)\}$$

Example: If we want to know who works for whom, but hide salary information, we can project out the salary:

• Personnel[personnel-num, name, boss]

Suppose we want to know who has a management position:

Personnel[boss] gives

boss 001

Attribute Renaming.

Discrete Math. for Engineering, 2004. Notes 8. Functions and Relations

- Sometimes we need to rename the attributes. We can combine this with projection. E.g.
- Projects[name → project-name, assigned → personnel-num]
- This is the same table as Projects[name, assigned], except with different attribute names.

Selection:

• Suppose T is a table with attributes $(c_0, c_1, ... c_{n-1})$ and E is a boolean expression with variable names drawn from $\{c_0, c_1, ... c_{n-1}\}$. Then

$$T \mid E$$

is a table with attributes and domains the same as ${\cal T}$ and graph

$$\{(c_0, c_1, ... c_{n-1}) \in \operatorname{graph}(T) \mid E\}$$

 Example: suppose we want to know all the personnel making more than 50000

• Example: Bob wants to know the names of all his

Theodore Norvell, Memorial University

projects due this year (projects \mid assigned=999 \land completion-date < 2004-01-01) [name]

Join:

- Join combines two tables.
- Consider tables

* Names

student-num	name	
12345	Smith	
23456	Jones	and
11235	Seth	
31415	Lee	

* Marks

student-num	mark
12345	A+
23456	В
11235	B+
31415	F

• Then the join Names*Marks is

Discrete Math. for Engineering, 2004. Notes 8. Functions and Relations

Theodore Norvell, Memorial University

student-num	name	mark
12345	smith	A+
23456	jones	В
11235	seth	B+
31415	lee	F

ullet Suppose A and B are tables with attribute names

$$attr(A) = (a_0, a_1, ... a_{m-1})$$
$$attr(B) = (b_0, b_1, ..., b_{n-1})$$

and domains

$$dom(A) = (A_0, A_1, ..., A_{m-1})$$

$$dom(B) = (B_0, B_1, ..., B_{n-1})$$

- We say A and B are *join-compatible* iff equally named attributes correspond to equal domains. I.e. iff $a_j = b_k$ implies $A_j = B_k$ (for all j, k)
- The *join* of join-compatible tables A and B, A*B, is a table C such that
 - st the set of attributes is the union of the sets of attributes of A and B

i.e. if

$$attr(C) = (c_0, c_1, ...c_{p-1})$$

Theodore Norvell, Memorial University

then

$$\{c_0, c_1, ..., c_{p-1}\} = \{a_0, ..., a_{n-1}\} \cup \{b_0, ..., b_{m-1}\}$$

st the domains correspond to the domains in A and B. I.e. if

$$dom(C) = (C_0, ...C_{p-1})$$

then (for all i, j, k) if $c_i = a_j$ then $C_i = A_j$ and if $c_i = b_k$ then $C_i = B_k$.

- * The graph consists of tuples that combine the values from tuples in A and B.
- st l.e. x is a tuple of C iff there exist tuples y from A and z from B such that

$$x[attr(A)] = y$$

and

$$x[attr(B)] = z$$

- * Note that y and z must agree on the values of any common attributes.
- Example: I want to know the names of people assigned to various projects

Projects[name → project-name,assigned → personnel-num]

* Personnel[personnel-num,name]

Gives

Typeset November 19, 2004

Discrete Math. for Engineering, 2004. Notes 8. Functions and Relations

Theodore Norvell, Memorial University

project-name	personnel-num	name
Snipe	001	Sue King
Snipe	999	Bob Willing
Snark	001	Bob Willing

How do we make this table?

personnel-num	name	boss	boss-name
001	Sue King	001	Sue King
002	Fong Ping	001	Sue King
999	Bob Willing	001	Sue King

Note that if we have binary relations then composition is essentially a join followed by a projection. I.e. if we regard a binary relation as a table having attributes *left* and *right*.

 $S \circ R \text{ is } (S[\textit{left} \leadsto \textit{middle,right}] * R[\textit{left,right} \leadsto \textit{middle}])[\textit{left,right}]$

SQL

19

 SQL is the standard (and most popular) data-base query language. It is based (loosely) on the query operations presented above.