Midterm

Engineering 3422, 2004

Friday, October 22

 \mathbf{Q} -1. What is your name?

Q0[6]. In this question all variables represent integers.

"True necessarily", "false necessarily", or "depends on the integers", in each case.

- If $a \equiv b \pmod{m}$ and $a \equiv b \pmod{n}$ then $a \equiv b \pmod{mn}$
- If $m \mid a$ and $m \mid b$ then $m \mid ab$ _____
- If $10 \mid a \text{ and } 11 \mid a \text{ and } |a| < 100.$

Q1[6]. In this question, variables P, Q, and R are boolean, while S and T are sets. A and B are predicates on values in S.

Classify each of the following sentences as "tautology", "contradiction", "conditional sentence".

- $P \land (P \to Q) \leftrightarrow P \land Q$ _____
- $S \cup (T S) = S \cup T$ _____
- $P \land (Q \leftrightarrow \neg P) \land Q$
- $\exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}, x > y$ _____
- $\forall y \in \mathbb{Z}, \exists x \in \mathbb{Z}, x > y$ _____
- $(\exists x \in S, A(x)) \land (\exists x \in S, B(x)) \rightarrow (\exists x \in S, A(x) \land B(x))$

 ${\bf Q2[4]}$ Express using quatifier notation and the divisibility relation. S and T are sets of integers .

- Every integer in S divides some integer in T.
- No integer in S divides any integer in T.
- A unique integer in S divides every integer in T.

Q3[10]. Directly from the definitions of congruence and divisibility, show that, for all integers a and b, if $a \equiv 2 \pmod{5}$ and $b \equiv 3 \pmod{5}$ then $ab \equiv 1 \pmod{5}$

 ${\bf Q4[4]}.$ Simplify as much as possible

- $\{x \in \mathbb{N} \mid \exists m \in \mathbb{N}, x = 7 2m\} =$ _____
- $(\forall a \in \mathbb{N}, \forall b \in \mathbb{N}, \exists x \in \mathbb{N}, \exists m \in \mathbb{N}, x = a bm) \Leftrightarrow$

Q5[10]. Show that for all sets A and B, $A \cap B = A \cap \overline{B}$ implies that $A = \emptyset$.