Quiz 1

Engineering 3422, 2004

Wednesday Oct 6, 2004

Q0. "True necessarily", "false necessarily", or "depends on the sets", in each case.

- If $A \cap B = \emptyset$ then $|A| + |B| = |A \cup B|$
- If $A \subseteq B$ then $A \cup B = A$ and $A \cap B = B$
- $\emptyset \in A$ _____
- If $A \subseteq B$ then $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ _____
- If $A \times B = \emptyset$ then either $A = \emptyset$ or $B = \emptyset$
- If $\forall x \in A, x \in B$ then $\exists x \in A, x \in B$ ______

Q1. Simplify as much as possible

- $\{x \in \mathbb{N} \mid x < 2\} =$
- $\{x \in \mathbb{N} \mid x < 0\} =$
- { $x \in \{0, 1, ..., 9\} \mid \exists y \in \mathbb{N}, y^2 = x\} =$
- $\neg \exists x \in A, (x \in \overline{B}) \Leftrightarrow$

Q2 Use quantifier notation to express the following English statements in predicate logic. A is an **array** of size $N \ge 0$ integers and $I = \{0, 1, ..., N-1\}$.

- Every number in I appears as as item of array A at least once.
- No item of A is negative.
- The items of array A are sorted in ascending order.

$\mathbf{Q3}$

Prove the following tautology for arbitrary sets A and B. Give a hint for each step. Use underlining to show where the principle of substitution is used.

 $(A-B) \cap C = (A-B) \cap (C-B)$