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Application: Designing algorithms
Sets and n-tuples can be represented in computer
memories in a number of ways.

We can design algorithms in terms of variables that
represent sets.

Often using set notation is clearer than designing in a
programming language.

Clearer algorithms means errors are easier to spot.

Example: A design for a spell checker

Notation var v : T introduces a variable called v whose
values are restricted to elements of set T .

Notation v := E assignment to v.

String the set of all strings.
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Spell check algorithm

var good : P( String )
var suggestions : P( String×String )
read good and suggestions from a file
while there are more input words {

var word, r : String
read word
if word /∈ good

prompt the user for a replacement suggesting
{ w | (word,w) ∈ suggestions } as

possibilities
if the user says "add" then

good := good ∪ {word}
write word

else if the user says replace
r := the replacement word specified
suggestions := suggestions ∪ {(word,r )}
write r

else the user says ignore
write word

write good and suggestions to file
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Application: Error correcting codes.
In communication channels sometimes a 1 bit is changed
to a 0 or the other way.

To combat this we use error correcting codes and error
detecting codes.

Define A∆B to mean (A − B) ∪ (B − A) i.e. the set of
things in exactly one of the two sets.

The “Hamming distance”of two sets A and B is |A∆B|,
the number of things in exactly one of the sets.

In our example we’ll use a mapping from hexadecimal
digits to sets in P({0, 1, ..., 7})
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0 7−→ {0, 1, 2, 3, 4, 5, 6, 7}
1 7−→ {0, 1, 2, 4}
2 7−→ {0, 1, 3, 7}
3 7−→ {0, 2, 6, 7}
4 7−→ {0, 1, 5, 6}
5 7−→ {0, 4, 5, 7}
6 7−→ {0, 3, 4, 6}
7 7−→ {0, 2, 3, 5}
8 7−→ ∅
9 7−→ {3, 5, 6, 7}
A 7−→ {2, 4, 5, 6}
B 7−→ {1, 3, 4, 5}
C 7−→ {2, 3, 4, 7}
D 7−→ {1, 2, 3, 6}
E 7−→ {1, 2, 5, 7}
F 7−→ {1, 4, 6, 7}

The sets in the mapping are chosen so that for any two
sets A 6= B, we have |A∆B| ≥ d where d is called the
Hamming distance of the code.

In the example |A∆B| ≥ 4 for all A 6= B.
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Encoding Method
• Any message to be sent will be encoded as a binary

string. E.g.
100111011110

• The string is broken into blocks of say 4 bits
1001, 1101, 1110 or in hex 9, D, E

• Each block is mapped to a subset of small natural
numbers. E.g. from P ({0, 1, ..., 7})

{3, 5, 6, 7}, {1, 2, 3, 6}, {1, 2, 5, 7}
• The sets are encoded in binary “octets” so that n ∈ S

iff 1 at position n

00010111, 01110010, 01100101
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Decoding Method
• The bits may flip in transit.

00010111, 01110011, 11100100

• Each 8 bit segment is mapped to a set so that n ∈ S
iff 1 at position n

{3, 5, 6, 7}, {1, 2, 3, 6, 7}, {0, 1, 2, 5}
• If the set is distance 0 or 1 from a set in the code, we

use that set. Otherwise, an error is detected.
{3, 5, 6, 7}, {1, 2, 3, 6}, error

We can then map back to binary:
1001, 1101, error

The example code corrects single-bit errors and detects
double-bit errors (1C2D) within each block.

Why it works?

Consider a graph with points representing each of the
258 subsets of {0, 1, . . . , 7} and lines between two points
if their Hamming distance is 1. Here is a small portion of
the graph.
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Suppose S and T are two points in the graph, the
Hamming distance is the length of the shortest path
between the points.

This means that |S∆T | ≤ |S∆U | + |U∆T |, for any sets
S, T , and U . Why? There is a path from S to U of length
|S∆U | and there is a path from U to T of length |U∆T |.
Putting these paths together we get a path of length
|S∆U | + |U∆T | from S to T , so the shortest path can’t
be longer than that.
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The Hamming distance of the code is 4.

Suppose S is in the code and U is any subset of
{0, 1, . . . , 7}. such that |S∆U | = 1.
• Let T be any set in the code other than S. Thus
|S∆T | ≥ 4.

• Then |U∆T | ≥ 3.
• Why? Suppose |U∆T | < 3. Then we could construct

a path from S to T of length less than 4 by going
through U . In other words we’d have

|S∆T | ≤ |S∆U | + |U∆T | = 1 + |U∆T | < 4

Now suppose S is in the code and U is any subset of
{0, 1, . . . , 7}. such that |S∆U | = 2.
• Let T be any set in the code other than S. Thus
|S∆T | ≥ 4.

• Then |U∆T | ≥ 2.

Typeset September 26, 2005 8



Discrete Math. for Engineering, 2005. Application Sllides 1 c° Theodore Norvell, Memorial University

When we receive a block, then following cases can hold.
• 0 bit difference. The set received is equal to a set in

the code.

• 1 bit error.
∗ The set received has a Hamming distance of 1 from

the correct set.
∗ The closest it could be to some other set in the

code is 3,
∗ since otherwise two sets in the code would have a

distance of less than 4.

• 2 bit errors.
∗ The set received has a Hamming distance of 2 from

the correct set.
∗ The closest it could be to some other set in the

code is 2.
∗ So the error will be detected — but will not be

correctable.

• More than 2 bits errors.
∗ The error may go undetected.

By choosing a Hamming distance of 5, all double bit
errors can be corrected (2C).
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With Hamming distance 6, all triple bit errors can be
detected (2C3D).

Sometimes it is useful to think of the code words as
bit-vectors and sometimes as sets.
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Why this is practical

Suppose that bit errors are randomly distributed and
there is one error in 1,000,000 bits.

(On a 8 MBit/s channel, this is about 8 errors a second!)

Now suppose we use the above code.
• Chance that an octet has no errorsµ

999999

1000000

¶8
' 0.999 99

• Chance that an octect has a one bit error
1

1000000
×
µ
999999

1000000

¶7
× 8 ' 7.999 9× 10−6

• Chance that there is a 2 bit errorµ
1

1000000

¶2
×
µ
999999

1000000

¶6
×
µ
8

2

¶
' 2.800 0× 10−11

• Chance of a 3, 4, 5, 6, 7, or 8 bit error
8X

i=3

µ
1

1000000

¶i

×
µ
999999

1000000

¶8−i
×
µ
8

i

¶
' 5.600 0× 10−17

On an 8 MBit/s channel this is less than 1 undetected
error every 18, 000 years.
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