
Discrete Math. for Engineering, 2005. Application slides 4 c° Theodore Norvell, Memorial University

Application: The correctness of
iterative statements
Suppose that
• S is a statement in a programming language

• P and Q are boolean expressions involving program
variables.

We write {P}S{Q} to mean that
• If statement S starts in a state where P holds

• then it can only terminate in a state where Q holds.

(Such a triple is called a Hoare triple after C.A.R.
Hoare. P is called the “precondition” and Q is called the
“postcondition”.)

For example the following are valid Hoare triples
• {i ≤ 100 ∧ j ≤ 100} i := i + j {i ≤ 200}

(I am using the notation “x := E” for assignment of
expression E to variable x. In C/C++ we would write
“x = E;”)

• {i = 4} i := i + 1; i := i× 2 {i = 10}

Typeset October 28, 2005 1

Discrete Math. for Engineering, 2005. Application slides 4 c° Theodore Norvell, Memorial University

• {BA = z × yx ∧ x > 0}
x := x− 1; z := z × y
{BA = z × yx}

We can also use variables that do not occur in the
program state. So

{i = K} i := i + 1; i := i× 2 {i = 2×K + 2}
is a valid Hoare triple.1

Now consider the following triple with integer x, y, z, A,
B

{x = A ∧ x ≥ 0 ∧ y = B}
z := 1;

while /*L*/ x > 0 do (x := x− 1; z := z × y)©
z = BA

ª
We can see that the triple is valid as follows:
• Let I be “BA = z × yx ∧ x ≥ 0”
• Let P (n) mean I holds the nth time point L is reached.

1 By the way, a Hoare triple {P}x := E{Q} is valid iff

P → Q[x := E] for all values of all variables

And you can extend this to a sequence of assingments. E.g. {P}x := E; y := F{Q}
iff

P → (Q[y := F])[x := E] for all values of all variables

Typeset October 28, 2005 2

Discrete Math. for Engineering, 2005. Application slides 4 c° Theodore Norvell, Memorial University

• We can show by simple induction that P (n) is true for
all n ∈ {1, 2, 3, ...}.

• Base step. P (1) is true because when we first reach
L it is right after the first assignment to z and so
x = A ∧ x ≥ 0 ∧ y = B ∧ z = 1 holds. This implies I.

• Inductive step. P (k) is the ind. hyp. W.T.P P (k + 1)
∗ To show the inductive step, we first show the validity

of
{I ∧ x > 0} x := x− 1; z := z × y {I}

∗ The (k + 1)th time point L is reached it is right after
kth iteration of the loop body.
∗ By the ind. hyp. I holds at the start of the kth

iteration of the loop body; so does x > 0.
∗ So by

{I ∧ x > 0} x := x− 1; z := z × y {I}
I holds at the end of the kth iteration of the loop
body and hence the (k+1)th time point L is reached.

• So by the principle of simple induction I holds
whenever L is reached.

• If the loop is ever exited, it will be the case that I holds
and also x ≤ 0 holds.

Typeset October 28, 2005 3

Discrete Math. for Engineering, 2005. Application slides 4 c° Theodore Norvell, Memorial University

• From I ∧ x ≤ 0 we can deduce x = 0 and hence
z = BA.

We can replace the loop body by any statement S such
that

{I ∧ x > 0} S {I}
For example we can replace the loop body by
if 2|x then (x := x/2; y := y2) else (x := x−1; z := z×y)

Hoare’s rule of iteration

We can generalize this technique to any loop
while E do S provided
• E does not affect the state.

• there is no way to exit the loop other than by E
evaluating to false.

The general rule is
• If {I ∧E} S {I} is valid

• then {I} while E do S {I ∧ ¬E} is valid

It is a good idea to document the invariant of nontrivial
loops.

Typeset October 28, 2005 4

Discrete Math. for Engineering, 2005. Application slides 4 c° Theodore Norvell, Memorial University

Application: The correctness of
recursive subroutines
Consider the following subroutine in C++

int pow(int x, int y) {
if(x==0)

return 1 ;
else if(x % 2 != 0)

// x is odd
return y * pow(x-1,y) ;

else // x is even and not 0
return pow(x/2,y*y) ;

}

Such a subroutine is called ‘recursive’ as it contains calls
to itself.

What does this routine do?

Let P (n) mean “for any y, pow(n, y) returns yn”.

Now we show for all n ∈ N , P (n) by complete induction.

Typeset October 28, 2005 5

Discrete Math. for Engineering, 2005. Application slides 4 c° Theodore Norvell, Memorial University

Base Step:
• For any y the call ‘pow(0, y)’ returns 1, which is y0.

Inductive Step:
• Let k be any natural greater than 0

• Assume as the ind. hyp. that, for all naturals j less
than k, P (j).

• Let y be any integer

• Case k is odd
∗ By the ind hyp ‘pow(k − 1, y)’ returns yk−1

∗ The value returned by ‘pow(k, y)’ is y×pow(k−1, y)
y × pow(k − 1, y) = y × yk−1 = yk

• Case k is even.
∗ By the ind hyp ‘pow(k/2, y2)’ returns

¡
y2
¢k/2

∗ The value returned by ‘pow(k, y)’ is pow(k/2, y2)

pow(k/2, y2) =
¡
y2
¢k/2

= yk

• By the principle of complete induction: for any n ∈ N,
for any y, pow(n, y) returns yn.

Typeset October 28, 2005 6

