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Unit 1. Propositional Logic
Reading — do all quick-checks
Propositional Logic: Ch. 2.intro, 2.2, 2.3, 2.4.
Review 2.9
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Statements or propositions
Defn: A statement is an assertion that may be labelled
true or false.
Defn: Proposition is another word for statement.
Examples:
The following are propositions
1.
√
2 > 1 — true

2. all planar graphs are 4-colourable — true
3. 6× 9 = 42 — false
4. the square root of 2 is rational — false
5. every even integer greater than 2 is the sum of two

primes. — unknown
6. the equation x2 + 1 = 0 has no real root — true

In the following propositions, the truth or falsity of
the statement depends on something unknown.
Nevertheless, we will accept them as propositions
1. i is the sum of two primes — the truth or falsity of this

statement explicitly depends on the value of i
2. x2 = x — the truth or falsity of this statement explicitly

depends on the value of x.
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3. if x is 0 or 1 then x2 = x — “formally” this statement
depends on the value of x, even though it is, in a
sense, necessarily true.

4. The tide is high — the truth or falsity of this statement
implicitly depends on the time of day and the location.

5. Wire “a” has a high voltage — the voltage on the
wire may vary with time, so the truth or falsity of this
statement may depend implicitly on the time.

Counterexamples:
1.
√
2 — this is a number, not a statement

2. the prime numbers — this is a set, not a statement
3. is the sum of two primes — this is a predicate, not a

statement
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Truth values
All true propositions are logically equivalent, as are all
false propositions.
• We use the symbol F to represent any false proposi-

tion
• We use the symbol T to represent any true proposition

Alternative notations
This course Digital Logic C++/Java
F 0 false
T 1 true
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Compound Propositions
AND, OR, and NOT

Aside: An algebra consists of a set of values and a set
of operations than operate on that set.
F and T are the values of a simple algebra called
propositional algebra or propositional calculus.
We will use P , Q, and R as variables that range over the
values F and T .
Just as +, −, × and ÷ combine numerical expressions,
we have algebraic operations that combine propositional
expressions.
Propositional operator AND (conjunction): P ∧Q is T if
and only if both P and Q are T .
The operands are called conjuncts.
P Q P ∧Q
F F F
F T F
T F F
T T T
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Example compound proposition:
all planar graphs are 4-colourable ∧ 6× 9 = 42

This evaluates to F

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Defn: We write A ⇔ B to mean two propositional
expressions A and B are equal regardless of the truth
values assigned to their propositional variables. We say
that expressions A and B are logically equivalent.
(N.B.⇔ is a relation between propositional expressions.)
Let’s check P ∧Q⇔ Q ∧ P :
• Assigning F to P and F to Q we get F ∧ F on the left

and F ∧ F on the right
• Assigning F to P and T to Q we get F ∧ T on the left

and T ∧ F on the right
• Assigning T to P and F to Q we get T ∧ F on the left

and F ∧ T on the right
• Assigning T to P and T to Q we get T ∧ T on the left

and T ∧ T on the right

In each case, the left and the right values are the same.
We conclude that P ∧Q⇔ Q ∧ P is an algebraic law.
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Defn: For propositional expressions A and B, we
write A ⇒ B to mean that for each assignment to the
propositional variables such that A evaluates to true, B
also evaluates to true. We say that B can be inferred
from A.
Let’s check P ∧Q⇒ P :
• Assigning F to P and F to Q we get F ∧ F on the left

and F on the right
• Assigning F to P and T to Q we get F ∧ T on the left

and F on the right
• Assigning T to P and F to Q we get T ∧ F on the left

and T on the right
• Assigning T to P and T to Q we get T ∧ T on the left

and T on the right

In each case, when the expression on the left evaluates
to true, the expression on the right is also true.
We conclude that P ∧Q⇒ P is an algebraic law.
Note: We will define propositional expression,
equivalence, and inference more formally later.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Some algebraic laws about AND
Identity : P ∧ T ⇔ P

Domination : P ∧ F ⇔ F

Idempotence : P ∧ P ⇔ P

Commutativity : P ∧Q⇔ Q ∧ P
Associativity : P ∧ (Q ∧R)⇔ (P ∧Q) ∧R

Because of the associativity law, we will write P ∧Q ∧R
without parentheses.
Propositional operator OR (disjunction): P ∨ Q is T if
and only if P is T or Q is T , or both are T .
The operands are called disjuncts
P Q P ∨Q
F F F
F T T
T F T
T T T

Example: today is sunny ∨ today I have an Umbrella
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Some algebraic laws about OR
Identity: P ∨ F ⇔ P

Domination: P ∨ T ⇔ T

Idempotence: P ∨ P ⇔ P

Commutativity: P ∨Q⇔ Q ∨ P
Associativity: P ∨ (Q ∨R)⇔ (P ∨Q) ∨R

Some laws about AND and OR
Distributivity of AND over OR:

P ∧ (Q ∨R)⇔ (P ∧Q) ∨ (P ∧R)
Distributivity of OR over AND:

P ∨ (Q ∧R)⇔ (P ∨Q) ∧ (P ∨R)
Precedence:
• Note that P ∧Q∨R might be interpreted as P ∧(Q∨R)

or (P ∧ Q) ∨ R. These expressions are not logically
equivalent.

• Consider this English ‘sentence’: The court finds that
you must serve 90 days and pay a $1000 fine or say
you are really very very sorry.

• Usually (i.e. in digital logic, in most programming
languages, and in most mathematical papers and
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books) AND has higher precedence than OR. Thus
P ∧Q ∨R is usually interpreted as (P ∧Q) ∨R.

• However, in this course, we follow the text and always
use parentheses when mixing the ∧ operator with the
∨ operator.

Propositional operator NOT (negation): ¬P is T if and
only if P is F

P ¬P
F T
T F

Precedence: NOT has higher precedence than AND and
OR. E.g. we interpret ¬P ∨Q as meaning (¬P ) ∨Q.
A law about NOT

Involution:¬¬P ⇔ P

Some laws about NOT, AND, and OR:

De Morgan’s law:¬(P ∧Q)⇔ ¬P ∨ ¬Q
De Morgan’s law:¬(P ∨Q)⇔ ¬P ∧ ¬Q

Contradiction:¬P ∧ P ⇔ F

Excluded Middle:¬P ∨ P ⇔ T

Typeset September 23, 2005 11



Discrete Math. for Engineering, 2005. Slide Set 1 c° Theodore Norvell, Memorial University

Alternative notations

Math Digital Logic C++/Java C++/Java (bitwise)
F 0 false 0
T 1 true -1
∧ · && &
∨ + || |
¬ ! ~
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Showing two sentences equivalent
Truth tables method

We can verify the laws using the “method of truth tables”.
Example

¬(P ∨Q)⇔ ¬P ∧ ¬Q
There are 4 possible values for P , and Q.
We make a table and work out the value of each
compound sentence
P Q (P ∨Q) ¬(P ∨Q) ¬P ¬Q ¬P ∧ ¬Q
F F F T T T T
F T T F T F F
T F T F F T F
T T T F F F F

Note that the columns for ¬(P ∨Q) and ¬P ∧¬Q are the
same.
So ¬(P ∨Q)⇔ ¬P ∧ ¬Q is a law.
Note that the number of rows is 2n where n is the number
of variables.
E.g. with 7 variables, 128 rows. With 10 variables, 1024
rows.
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Algebraic method
We can apply the laws to create new laws.

(P ∨Q) ∧R
⇔ R ∧ (P ∨Q) Commutativity
⇔ (R ∧ P ) ∨ (R ∨Q) Distributivity of AND over OR
⇔ (P ∧R) ∨ (Q ∧R) Commutativity (twice)

This shows
Distributivity of AND over OR: (P∨Q)∧R⇔ (P∧R)∨(Q∧R)
We also have:
Distributivity of OR over AND: (P∧Q)∨R⇔ (P∨R)∧(Q∨R)
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More Operators
Biconditional and Implication

Propositional operator BICONDITIONAL: P ↔ Q is T if
and only if P and Q are both T or both F .
We can define P ↔ Q by a law
Defn of biconditional: P ↔ Q⇔ (P ∧Q) ∨ (¬P ∧ ¬Q)

or by a table
P Q P ↔ Q
F F T
F T F
T F F
T T T

In English we say “if and only if” (abbreviated iff).
Example:
• p is prime iff p has exactly two factors.
• I wear my hat iff it snows. This will be false only when
∗ I wear my hat, but it is not snowing
∗ I don’t wear my hat, but it is snowing
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Transitivity : (P ↔ Q) ∧ (Q↔ R)⇒ (P ↔ R)

Reflexivity : P ↔ P ⇔ T

Commutativity : P ↔ Q⇔ Q↔ P

Question: How is↔ different from⇔ ?
•↔ is a propositional operator. We use it to combine

two propositional expressions to make a new proposi-
tional expression. So P ↔ P ∧ Q is neither true nor
false, it is a propositional expression.

•⇔ is a relation on propositional expressions. We use
it to compare two propositional expressions. For ex-
ample P ⇔ P ∧Q is false, since the two expressions
are not equivalent.

Propositional operator IMPLICATION: Suppose I say
• “If it is snowing, I wear my hat”

This will be false if and only if it snows and I don’t wear
my hat.
We use the notation P → Q for an expression that is F
only when P is T but Q is F .
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It would be the same to say
• Either it isn’t snowing or I wear my hat.

Another example:
• For all integers n,greater than 2, if n is prime, then n is

odd.
• This means the same as: For all integers n,greater

than 2, n is not prime or n is odd.

We can define→ by the law
Defn of implication: P → Q⇔ ¬P ∨Q

or the table
P Q P → Q
F F T
F T T
T F F
T T T

Example: x is prime → x is odd. (Note we take the
primes to be 2, 3, 5, 7, ...)
• For x = 0 we have F → F so the statement is T

• For x = 1 we have F → T so the statement is T

• For x = 2 we have T → F so the statement is F
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• For x = 3 we have T → T so the statement is T

• For x = 4 we have F → F so the statement is T

We can conclude that the statement may be T or F
depending on the value of x.
There are many useful laws about implication

Shunt : P → (Q→ R)⇔ (P ∧Q)→ R

Contrapositive : P → Q⇔ ¬Q→ ¬P
Domination : F → P ⇔ T

Domination : P → T ⇔ T

Identity : T → P ⇔ P

Anti-identity : P → F ⇔ ¬P
Modus Ponens : P ∧ (P → Q)⇒ Q

Transitivity : (P → Q) ∧ (Q→ R)⇒ (P → R)

Reflexivity : P → P ⇔ T

Anti-symmetry : (P → Q) ∧ (Q→ P )⇔ P ↔ Q

Precedence:
• The ∧, ∨ and ¬ operators have higher precedence

than→ and↔.
• The→ and↔ operators have the same precedence.
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• I strongly suggest using parentheses when a →
operator is mixed with another operator of the same
precedence. E.g. A→ B ↔ C.

Aside: The English word “if” usually indicates some form
of causality. John of Navarre once said (only in French)

“if my mother had been a man, then I would be king”
If we naively consider this “if” to be implication, then we
can see it is true: His mother was not a man, he was not
king, so we have F → F which is T . However the same
analysis applies to the statement
“if my mother had been a peasant, then I would be king”
which John probably would have considered a false
claim. In English, “if A then B” often means: ‘in any
possible world where A is true, B is also true’. What
makes John’s statement humorous is that we must
consider all possible worlds in which his mother was a
man. In any case, the English use of the word “if” is
clearly more complex than implication. Implication is
much simpler, meaning simply “not A, or B”.
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XOR, NAND and NOR
These three operators are the negations of the
BICONDITIONAL, AND, and OR

Defn of XOR : P ⊕Q⇔ ¬(P ↔ Q)

Defn of NAND : P ZQ⇔ ¬(P ∧Q)
Defn or NOR : P YQ⇔ ¬(P ∨Q)

P Q P ⊕Q P ZQ P YQ
F F F T T
F T T T F
T F T T F
T T F F F

Note that the English word OR has many different
meanings:
• ‘Comes with fries or salad’: Comes with fries Z comes

with salad.
• ‘The exam is tomorrow or the next day’: The exam is

tomorrow ⊕ the exam is the next day.
• ‘Either the station is off air or my radio is broken’: The

station is off air ∨ my radio is broken.
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Tautology and equivalence
In this section and the next, we formalize the ideas of
equivalence and proof.
Definition a propositional expression is an expression
made up of
• the constants T and F

• any number of propositional variables P , Q, R, ...
• the operators ∧, ∨, ¬, ...
• parentheses

Definitions
• A propositional expression is a tautology iff it evalu-

ates to T regardless of the truth values assigned to its
propositional variables.

• A propositional expression is a contradiction iff it
evaluates to F regardless of the truth values assigned
to its propositional variables.

• A propositional expression is a conditional statement
otherwise.
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Using these definitions we can give a new definition to
the relation of equivalence (⇔)
Two propositional expression A and B are equivalent iff
A↔ B is a tautology.
Examples:
• P ∨Q ∨ (¬P ∧ ¬Q) is a tautology.
• (P ∨Q)∧(¬R∨¬Q)∧(¬R∨¬P )∧R is a contradiction
• P ∧ (¬P ∨ ¬Q) is a conditional statement
• P ∧ Q ⇔ ¬(¬P ∧ ¬Q) does not hold because
P ∧Q↔ ¬(¬P ∧ ¬Q) is not a tautology

• P ∧ Q ⇔ ¬(¬P ∨ ¬Q) holds because
P ∧Q↔ ¬(¬P ∨ ¬Q) is a tautology

• P ⇒ P ∨Q holds because P → (P ∨Q) is a tautology

Note:
• A propositional expression A is a tautology iff A⇔ T .
• A propositional expression A is a tautology iff T ⇒ A

• If A⇔ B then B is a tautology iff A is a tautology.
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Substitution Principles and Proof
Substitution principles

Principle: Substituting an equivalent statement. If
A ⇔ B and (A) is a component of an expression C
then C ⇔ D where D is obtained by replacing the (A)
component of C by (B).
Note: In applying this principle, you can add and remove
redundant parentheses at will.
Example: We know P ∨ T ⇔ T . [This is the A ⇔ B]
So in the statement Q ∧ (P ∨ T ) [this is the C] we can
replace (P ∨ T ) by T to get Q ∧ T [this is the D] . We
conclude Q ∧ (P ∨ T )⇔ Q ∧ T .
Example: We know ¬¬P ⇔ P [This is the A ⇔ B] So
in the conditional statement ¬¬P ∨ ¬Q [this is the C] we
substitute to get P ∨ ¬Q [this is the D]. We conclude

¬¬P ∨ ¬Q⇔ P ∨ ¬Q
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Notn: Substitution notation.
• Let A and B be propositional expressions, and V be a

propositional variable.
• We will write B[V := A] to mean the expression B with

every occurrence of the variable V replaced by (A).

Example:
• (P ∧ Q ∧ R)[Q := S ∨ T ] is the expression
P ∧ (S ∨ T ) ∧R

• (P∨¬P )[P := P∨Q] is the expression (P ∨Q) ∨ ¬(P ∨Q)
Note: Sometimes we want to simultaneously replace
multiple variables. I’ll use the notation C[V,W := A,B].
Example: (¬P ∨Q)[P,Q := ¬P,¬Q] is (¬¬P ∨ ¬Q)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Aside: Using the substitution notation, we can restate
the ‘principle of substituting an equivalent statement’:
Principle: Substituting an equivalent statement
(restated). If A, B, and C are propositional expressions,
V is a propositional variable and A⇔ B, then

C[V := A]⇔ C[V := B]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Principle: Replacing a logic variable in a tautology.
For any propositional expressions A, B, C and any
propositional variable V :
• if B is a tautology then B[V := A] is also a tautology;

and
• if B ⇔ C then B[V := A]⇔ C[V := A].

Notes:
• The second bullet follows from the first. Why?
• Again removing redundant parentheses is ok.
• This principle can be extended to simultaneous

replacement of multiple variables.

Examples:
• Replacing P by (P ∨Q) in the tautology P ∨ ¬P gives
(P ∨Q) ∨ ¬(P ∨Q) , so this too must be a tautology.

• We know that (P → Q) ⇔ (¬P ∨Q) is an equiva-
lence; simultaneously replacing P with ¬P and Q with
¬Q we get

(¬P → ¬Q)⇔ (¬¬P ∨ ¬Q)
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Algebraic proof
We can use these principles to formalize the notion of a
proof of equivalence.
Defn: An algebraic proof of an equivalence A0 ⇔ An is
a sequence of statements written

A0
⇔ A1 hint0
⇔ ...

⇔ An hintn−1
where, for each i, Ai ⇔ Ai+1 can be seen to be
an equivalence using the substitution and variable
replacement principles and previously proved laws (and
tautologies). The hint is used to indicate to the law used.
Convention: Whenever substitution is involved, I like to
underline the part of the expression that is about to be
substituted for. This makes the proof much easier to
follow.
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Here are some substitutions into laws
Defn impl. P → Q⇔ ¬P ∨Q [P,Q := ¬P,¬Q]
after replacement: ¬P → ¬Q⇔ ¬¬P ∨ ¬Q
Commutativity P ∨Q⇔ Q ∨ P [Q := ¬Q]
after replacement: P ∨ ¬Q⇔ ¬Q ∨ P
Defn impl. P → Q⇔ ¬P ∨Q [P,Q := Q,P ]
after replacement: Q→ P ⇔ ¬Q ∨ P

Example: Here is an algebraic proof of the contrapositive
law using only laws presented earlier.
Proof. RTP ¬P → ¬Q⇔ Q→ P

¬P → ¬Q
⇔ ¬¬P ∨ ¬Q Definition of implication

(with P and Q replaced by ¬P and ¬Q)
⇔ P ∨ ¬Q Involution

(substituting ¬¬P by P )
⇔ ¬Q ∨ P Commutativity

(with ¬Q replacing Q)
⇔ Q→ P Definition of implication

(with P replaced by Q and Q replaced by P )
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In this example, I made the use of the substitution
and replacement principles explicit. Normally, we just
mention the name of the law involved.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example: We prove that P → P ∨ Q is a tautology; we
do that by showing it equivalent to T .

P → P ∨Q
⇔ ¬P ∨ (P ∨Q) Definition of implication
⇔ (¬P ∨ P ) ∨Q Associativity of OR
⇔ T ∨Q Excluded middle
⇔ T Domination
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Example : We prove the distributivity of OR over AND
from the distributivity of AND over OR.
Proof. RTP P ∨ (Q ∧R)⇔ (P ∨Q) ∧ (P ∨R)

P ∨ (Q ∧R)
⇔ ¬¬(P ∨ (Q ∧R)) Involution
⇔ ¬(¬P ∧ ¬(Q ∧R)) De Morgan
⇔ ¬(¬P ∧ (¬Q ∨ ¬R)) De Morgan
⇔ ¬((¬P ∧ ¬Q) ∨ (¬P ∧ ¬R)) Dist. AND over OR
⇔ ¬(¬(P ∨Q) ∨ ¬(P ∨R)) De Morgan
⇔ ¬¬((P ∨Q) ∧ (P ∨R)) De Morgan
⇔ (P ∨Q) ∧ (P ∨R) Involution
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Inference
Defn. For two propositional expressions A and B we say
that B can be inferred from A iff A→ B is a tautology.
We say that A is as weak as than B and that B is as
strong as than A. Notation: Either A⇒ B or B ⇐ A.
Example: P ⇒ P ∨Q since P → P ∨Q is a tautology.
Notes:
• Inference is a refinement of equivalence in that A⇔ B

exactly if A⇒ B and B ⇒ A.

We can extend the principle of replacement to inferences:
Principle: Replacing a logic variable in a tautology.
For any propositional expressions A, B, C and any
propositional variable V :
• if B is a tautology then B[V := A] is also a tautology;
• if B ⇔ C then B[V := A]⇔ C[V := A]; and
• if B ⇒ C then B[V := A]⇒ C[V := A].

Extending the principle of substitution is a bit trickier.
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Principle: Monotone Substitution. Let A, B, and C be
propositional expressions. Suppose that A ⇒ B. It is
always the case that
• A ∧ C ⇒ B ∧ C
• C ∧A⇒ C ∧B
• A ∨ C ⇒ B ∨ C
• C ∨A⇒ C ∨B
• C → A⇒ C → B

Principle: Anti-Monotone Substitution. Let A, B, and
C be propositional expressions. Suppose that A⇒ B. It
is always the case that
• A→ C ⇐ B → C

• ¬A⇐ ¬B
By using monotone and anti-monotone substitution a
number of times, we can determine the effect of a
substitution involving an isolated part of an expression.
Example: We know that P ⇒ P ∨ Q so what is the
relationship between

R ∧ ¬P and R ∧ ¬(P ∨Q) ?
• Since P ⇒ P ∨ Q we have ¬P ⇐ ¬(P ∨ Q), by
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anti-monotone substitution.
• Then by monotone substitution we have

R ∧ ¬P ⇐ R ∧ ¬(P ∨Q)
Challenge:
• Develop a definition of algebraic proof, which allows

you to prove inferences as well as equivalences.
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Duality
Note that many laws of propositional logic come in pairs.
E.g.

De Morgan’s laws: ¬(P ∧Q)⇔ ¬P ∨ ¬Q
¬(P ∨Q)⇔ ¬P ∧ ¬Q

The Principle of Duality: For any law of propositional
logic A⇔ B involving only propositional variables, AND,
OR, NOT, T, and F.

If you replace

∧ by ∨
∨ by ∧
T by F
F by T

to get A0 ⇔ B0, this too will be a

law.
We say that AND and OR are dual to each other.
For example: Here is a law about AND, OR and NOT

¬(¬P ∨Q)⇔ P ∧ ¬Q
Having proved this law, we immediately get another law

¬(¬P ∧Q)⇔ P ∨ ¬Q
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by duality.
Why it works: In the truth tables for AND, OR and NOT,

we can systematically replace

∧ by ∨
∨ by ∧
T by F
F by T

and we still have

valid truth tables.
Similarly NAND and NOR are dual to each other, as are
BICONDITIONAL and XOR.
E.g. If we know P⊕T ⇔ ¬P we also know P ↔ F ⇔ ¬P
IMPLICATION is dual to an operator 8 defined by

P 8 Q⇔ ¬P ∧Q
NOT is dual to itself.
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Summary of definitions
• A statement is an assertion that may be labelled true

or false. Proposition is another word for statement.
• A propositional expression is an expression made

up of
∗ the constants T and F

∗ any number of propositional variables P , Q, R, ...
∗ the propositional operators ∧, ∨, ¬, ...
∗ parentheses

• A propositional expression is a tautology iff it evalu-
ates to T regardless of the truth values assigned to its
propositional variables.

• A propositional expression is a contradiction iff it
evaluates to F regardless of the truth values assigned
to its propositional variables.

• A propositional expression is a conditional statement
if it may evaluate to either T or F depending on the
values assigned to its propositional variables.

• Propositional expressions A and B are logically
equivalent iff A↔ B is a tautology.
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Summary of laws
Commutative operators: ∧, ∨,↔, ⊕.
Associative operators: ∧, ∨,↔, ⊕.
Idempotent operators: ∧, ∨
Identities and anti-identity:

T ∧ P ⇔ P

F ∨ P ⇔ P

T → P ⇔ P

P → F ⇔ ¬P
T ↔ P ⇔ P

F ⊕ P ⇔ P

Domination:
F ∧ P ⇔ F

T ∨ P ⇔ T

F → P ⇔ T

P → T ⇔ T

Distribution laws:
P ∧ (Q ∨R) ⇔ (P ∧Q) ∨ (P ∧R)
P ∨ (Q ∧R) ⇔ (P ∨Q) ∧ (P ∨R)
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De Morgan’s laws
¬(P ∧Q) ⇔ ¬P ∨ ¬Q
¬(P ∨Q) ⇔ ¬P ∧ ¬Q

Biconditional laws
Definition of biconditional : (P ↔ Q)⇔ (P ∧Q) ∨ (¬P ∧ ¬Q)

Transitivity : (P ↔ Q) ∧ (Q↔ R)⇒ (P ↔ R)

Reflexivity : P ↔ P ⇔ T

Implication Laws:
Definition of implication : P → Q ⇔ ¬P ∨Q

Shunt : P → (Q→ R)⇔ (P ∧Q)→ R

Contrapositive : P → Q⇔ ¬Q→ ¬P
Modus Ponens : P ∧ (P → Q)⇒ Q

Transitivity : (P → Q) ∧ (Q→ R)⇒ (P → R)

Reflexivity : P → P ⇔ T

Anti-symmetry : (P → Q) ∧ (Q→ P )⇔ P ↔ Q

Other very useful laws:
Involution : ¬¬P ⇔ P

Definition of XOR : ¬ (P ↔ Q)⇔ P ⊕Q

Contradiction : ¬P ∧ P ⇔ F

Excluded middle : ¬P ∨ P ⇔ T

Typeset September 23, 2005 37



Discrete Math. for Engineering, 2005. Slide Set 1 c° Theodore Norvell, Memorial University

Q & A
Q. I don’t understand why there are two symbols: ↔ and
⇔. Don’t they mean the same thing?
A. The↔ symbol is an operator, which combines boolean
values T and F according to the rule in it’s truth table.
The ⇔ is a relation we use to compare propositional
expressions.
If you ask me what the value of P ↔ Q is, I would say
that I don’t know because its value depends on what
values are assigned to the variables P and Q.
If you asked me whether P ⇔ Q, I can confidently say
“no they are not equivalent”.
One way to look at it is that the ↔ symbol is a
mathematical operator that combines mathematical
values in {T, F}, just a + is a mathematical operator
that combines numerical values. On the other hand⇔ is
a relation between mathematical expressions, meaning
that the two expressions have the same meaning. We
might say that ↔ is part of mathematics, while ⇔ is a
part of meta-mathematics.
Q. Same question for→ and⇒.
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A. Same answer. → is an operator, that combines
boolean values, whereas ⇒ is used to compare
propositional expressions.
Q. Then how do↔ and⇔ relate to good old = ?
The equals sign is used to combine values of any type
to obtain a truth value. For example 1 = 2 is F . You
can think of ↔ as a version of = which we will use
only to combine boolean values. However often people
write simply “A = B” to mean “A = B is a tautology”.
For example, someone might write “2y = y + y” when
clearly what they mean to say is that the “2y = y + y is
a tautology”. So in this usage the equals sign is being
used more like equivalence.
Q. Why not use the same symbols as the digital logic
course?
A. (0) As you will see the ∧ and ∨ symbols fit nicely with
the ∩ and ∪ symbols used in set theory, which we will
see next. (1) The ∧ and ∨ symbols are quite common
outside of digital logic. (2) The ∧ and ∨ symbols are
slowly becoming more commonly used in writing about
digital logic.
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