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Finite State Automata (Finite State
Machines)
Finite State Automata are graphs in which
• the vertices represent the states of an object (or

system)

• one state is designated the “start state”

• zero or more states are designated “final states”

• each edge is directed from one state to another

• each edge may be labeled:
∗ Typically with an event/reaction pair.
∗ Sometimes in other ways.
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Example: Asynchronous System

Off Booting Ready 
for Login

Logged 
In

Shutting 
Down

power switched

log in

log outshut down

shut down

delta

delta

Here
• The start state is named “Off”

• There are no final states

• Only events appear (not reactions)

• The delta event represents the passage of some
amount of time

• The above is an “asynchronous” system
∗ Events may happen at variable intervals.
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Example: Synchronous System

As you know, state machines can model synchronous
digital hardware
• events are the inputs at each clock

• reactions are the outputs at each clock

No Carry Carry

( 0,0 ) / 0

( 1,0 ) / 1

( 0,1 ) / 1

( 0,1 ) / 0

( 1,0 ) / 0

( 1,1 ) / 0

( 0,0 ) / 1

( 1,1 ) / 1

A serial adder.
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Example: Software objects

Empty Normal Full

Error

push[ size<max-1 ] / size +=1

pop[ size > 1 ] / size -= 1

pop / size -= 1

push

push[ size=max-1 ] / size += 1pop[ size=1 ] / size := 0

pop

push / size+=1

A finite state model of a Stack class.
• vertices represent some aspects of an object’s state.

• events are calls to the object’s public functions.

• In [square brackets] are conditions restricting transi-
tions.

• reactions modify aspects of the object’s state not
captured by vertices, specify new events, specify
return values.
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Formalizing Finite State Automata

Directed Graphs (Reminder)

Defn: A directed graph, D = (V,E, φ), consists of
• A set of vertices V

• A set of edges E

• A function φ : E → (V × V )

Example: V = {0, 1, 2} E = {a, b, c} and φ(a) = (0, 1),
φ(b) = (1, 2), φ(c) = (2, 0)

0 1

2

a

b
c

Defn: A walk in a directed graph, D = (V,E, φ), is an
alternating sequence of vertices and edges

(v0, e1, v1, e2, ..., en, vn)

where φ(ei) = (vi−1, vi), for i ∈ {1, 2, ..., n}.
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Finite State Automata

Defn: A finite state automaton (FSA), A =
(V,E, φ, s, F,Σ,Π, λ) consists of
• (V,E, φ) is a finite directed graph

• s ∈ V is a start state

• F ⊆ V is a set of final states

• Σ is a set of input symbols (events)

• Π is a set of output symbols (reactions)

• λ : E → (Σ× Π) is a labelling function

Each walk
(v0, e1, v1, e2, ..., en, vn)

in the graph D = (V,E, φ) where v0 = s gives rise to a
behaviour in the automaton

(σ1/π1, σ2/π2, ..., σn/πn)

where λ(ei) = (σi, πi), for each i ∈ {1, 2, ..., n}.
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Example: The serial adder again.

No Carry Carry

( 0,0 ) / 0

( 1,0 ) / 1

( 0,1 ) / 1

( 0,1 ) / 0

( 1,0 ) / 0

( 1,1 ) / 0

( 0,0 ) / 1

( 1,1 ) / 1

For the serial adder, one behaviour is
((1, 1)/0, (1, 0)/0, (0, 0)/1)

This corresponds to
11

+ 01
100
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Defining Languages

Sometimes we want to define some behaviours as
complete and others as incomplete.

For example, suppose we want to define the set of valid
C++ floating point constants.

Rules for floating point constants
• Basic form is ±DDD.DDDe±DDD

• Signs are optional in both mantissa and exponent

• Exponent part is optional.

• Decimal point is optional.

• Must have either exponent part or decimal point.

• At least one digit must appear before or after the
decimal point

• At least one digit must appear before the exponent
part.

• At least one digit must appear in the exponent part if
any

The 3 final states are marked with arrows to double
circles
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We use only input symbols, not output symbols. Symbol
D stands for any digit.

start
at least one 

digit 1
after decimal 

point 1

after e

after sign 
1

after sign 
2

at least one 
digit 2

at least one digit 
after decimal 2

+
-

D .

D

e
e

-
+

e

D

D

D

D

after decimal 
point 2

.

D

D

.

D
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A complete behaviour is one that arises from a walk that
starts at the start state and ends at a final state.

Thus
DD.DDe +DD

is a complete behaviour, and
DD.DD

is a complete behaviour, but
DD.DDe+

is not.

Furthermore
DD.DD.DD , +DD. +DD , and eDD

are not behaviours at all.

A language is a set of finite sequences.

The language of an FSA is its set of complete behaviours.

Not all languages can be defined by some FSA.
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Problems on FSA

Some useful problems:
• Given an automaton, find an equivalent deterministic

automaton. A deterministic automaton does not have
more than one transition from any node labeled with
the same event.

• Given an automaton describing a language, what de-
terministic automaton describing the same language
has the fewest states.

• Given a list of properties does the automaton satisfy
the properties. Some example properties might be
∗Whenever there is an ‘req0’ event, there will

eventually be an ‘ack0’ response’
∗ There will not be two ‘ack0’ responses with an

intervening ‘req0’ event.

Properties such as these can be verified by computer.

Because FSA are well defined mathematically and are
finite, they are well suited to modelling (finite state)
systems and to (automated) proving of properties of
systems.
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