Discrete Math. for Engineering, 2005. Notes 6. Induction (© Theodore Norvell, Memorial University

Induction

Properties. A property of natural numbers is a function
from the natural numbers to {7, F'}.

Examples

e Being odd: Define odd(n) to mean that natural number
n 1s odd

e Being prime: Define prime(n) to mean that n is prime
e Triangular sum. Define tri(n) to mean

°. nin+ 1
B

1=0

Of these odd and prime are not true of all natural
numbers, but ¢rz is true of all natural numbers

e =Vn € N, odd(n)
e —Vn € N, prime(n)
e Vn € N, tri(n)
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Simple Induction

Suppose we know for a property P of the natural
numbers that: If

e () P istrue of 0.

e (b) that for all £ in N, if the property is true of £, then it
IS also true of k£ + 1.
xl.e. (P(0)— P(1)) and (P(1) — P(2)) and
(P(2) — P(3)) and ...
Then
e From (a) we know P(0) is true
e From (P (0) (1)) and P(0), we know P(1) is true
e From (P (1) (2)) and P(1), we know P(2) is true
e From (P (2) (3)) and P(2), we know P(3) is true
e and so on ad infinitum.

— P
— P
— P

In fact it must be that P(n) is true for all n € N.
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Example O

Consider the property of n that (> i) =
e (a) We define

tri(n) iff (f: z) _ ”<”2+ D

1=0

n(n+1)
5 -

e (b) (Base Step) We will show ¢ri(0)

e (d) (Induction Step) We will show that, for any & in N,
if tri(k), then tri(k + 1)
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e Now we have
x tri(0) by the base step

* tri(1) by the induction step and ¢ri(0)
* tri(2) by the induction step and ¢ri(1)
* and so on

e In fact we have Vn € N, tri(n). That is

Vn € N, <z”: z) — n(n; D

1=0
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The Theorem of Mathematical Induction

Principle: The “theorem of (simple) mathematical
Induction” states that

Notes

e The antecedent P(k) is called the “induction hypothe-
sis” (Ind. Hyp.)

e Proof is based on the WOP. See book.

e In applying this theorem
+ P(0) is called the “base step”

xVk € N, P(k) — P(k + 1) is called the “inductive
step”

Informal “proof”: Recall that PAQ < P A (P — Q)
¢ In the infinite case we have
PO)AP(L)AP2)A---
< PO)A(P0)— P(1))A(P(1) = P(2)) A---
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A proof by the theorem of (simple) mathematical
iInduction answers the following questions

e (&) What is the property of the natural numbers?

¢ (b) What do we need to prove for the base step?

e () What is a proof of the base step?

¢ (d) What do we need to prove for the inductive step?
e (e) What is a proof of the inductive step?

Example 1

We will show that, for all n € N,
Y i =n(n+1)2n+1)/6
1=1

Proof:

(a) Let P(n) be the property of a natural number n that
St =nn+1)(2n+1)/6

e (b) Base Step: We need to show P(0),i.e.
0

Y i =0(0+1)(0n+1)/6

1=1

x (c) Proof of Base Step: The LHS is 0 since the sum
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of O things is always 0. The RHS simplifies to O.
Thus P(0) holds.

e (d) Induction Step We need to show that Vi € N, if

Z 2 =k(k+1)(2k +1)/6 (*)
1=1

then
k41

22_k+ (k+D+D2k+1)+1)/6  (*%)

x (e) Proof of Induction Step
x Let k£ be any natural number.
x Assume (Induction Hypothesis)

> i =k(k+1)(2k +1)/6
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«x We need to show (**) .

LHS
k+1

= E K5
1=1

k
= (k+1)°+ ) i Split off last term
1=1
— (k+1)*+ k(k +1)(2k 4+ 1)/6 By the ind. hyp. (*)
(K* + k)(2k + 1)
6

2%k3 + 3k%2 + k
— k24 92k+1
+2k+1+ ;

2k% 4+ 9k* + 13k + 6
— ; Put over common denom.

= K>+ 2k+1+ Expand

Expand
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X

RHS
(E+1D)((k+1D)+1D)2(k+1)+1)

6

_ (k+1)(l~c+62)(2k+3) Adding

k2 + 3k 4+ 2)(2k
:( +3 +6 ) +3)Expand

2k3 + 9k* + 13k + 6
= ; Expand
«x Thus we have (**)
e By the theorem of mathematical induction we have

Vn € N, P(n). I e. for all natural n,

Zz =n(n+1)(2n+1)/6
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Example 2 If |S| € Nthen [P(S)| = 21*.

Recall that P(.9) is the set of all subsets of S

Proof:

e (a) Let P(n) (for n € N) mean: for all sets S, if |S| =n
then |P(S)| = 2"

e We must show Vn € N, for all sets S, if |S| = n then
[P(S)| =2"

¢ (b) Base Step: We must show that all sets of cardinality
0 have a power set of size 2°.

e (c) Proof of Base step:
* There is only one set of size 0 namely (). The power
set of () is {(} and has size 1, which equals 2’

e (d) Induction Step: We must show that, for all £ € N, if
all sets of size k have a power set of size 2%, then all
sets of size k + 1 have a power set of size 2¢*1.

e (e) Proof of induction step:
x Let k£ be any natural number.

x Assume (as Induction Hypothesis) that all sets of
size k have a power set of size 2*.
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x Remains to prove: All sets of size k + 1 have power
sets of size 2/*!

x Let .S be any set of size k + 1.

x Let z be any member of S.

+ We can partition P(.5) into two disjoint sets ) =
{rCcS|lzé¢Tand R={T CS|xeT}.

x* Note. P(S)=QURand QN R =0So |P(S)| =
Q| +|R].

x Also note that each element of R can be obtained
from an element of () by “unioning in” .

x And each element of () can be obtained from an
element of R by “subtracting out” .

* S0 |Q] = [R].
+ Finally note that @ = P(S — {z}) and since
S — {z}| = k we have (by the ind. hyp.) |Q| = 2"
« [P(S)| = QI + [R| = Q| +]Q] =2 x 2F = 2V
¢ By the theorem of mathematical induction
Vn € N, for all sets S, if |S| =n then |[P(S)| =2"
[]

Example of the construction of ¢) and R
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S ={a,b,c,d}

If x+ = a then we have
Q) R
{0 {{a},
{0}, {a, b},
{c}, {a,c},
{d}, {a,d},
{b, c}, {a,b, c},
{b,d}, {a,b,d},
{c,d}, {a,c,d},

{b,c,d}} {a,b,c,d}}
Extending the principle

What if P(0) isn’t true? Or isn’t meaningful. We can start
from P(1) or P(2) and so on; even from P(—42).

Principle: The theorem of (simple) mathematical
induction (extended version).

e For any property P of the integers and ny € Z
* if P(ny) and
« for all k € {ng,ng+ 1, ...}, if P(k) then P(k + 1)
x then Vn € {ng,ng +1,...}, P(n)
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Example 3: Call a set of straight lines in a plane
“independent” if any two lines meet at a point and no
three lines meet at a point.

Theorem. For n € {1,2,...} any set of n independent
lines divides the plane into 222

2
Proof
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e S0, by the theorem of simple mathematical induction
(extended version) we have proved the theorem. [

Complete Induction

We can use a stronger induction hypothesis.
This often make the proof much easier.

Principle The theorem of complete mathematical
iInduction:

The induction hypothesis here is:
e “for all integers j, with 0 < j < k, P(j)".
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‘Informal Proof’:
P(0)
< P(0)

Example 4
Consider the family of sequences defined by
Pap = 1
Dan 2 a X Pan_1ifn > 0andnis odd
Da,n = (pa,n/2)2 if n > 0 and n is even
(For each value for a we get a sequence p, o, pa1, --- )
Make a table or two:

n Pa2n n P3n
01 01
12 .13
a = 2. 5 4 a = 3. 5 9
3 8 3 27
4 16 4 81
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Theorem: foralln € N, a € R, we have p,, = a".

Note: For the purpose of this theorem we will consider
0¥ = 1.
Proof by complete induction.
e Let Q(n) mean that “for all « € R, we have p,,, = a"”
e Base step: We must show that Q(0). l.e. that for all
a € R, we have p, o = aV”
e Proof of base step:
x Let a be any real number.
* RHS = p,o =1, by defn of p
« LHS =a° =1
e Induction step: We must show that, for all £ > 1, if
Qj), forall j € {0,1,..,k — 1}, then Q(k).
l.e. forall &k > 1, If
Vi€ {0,1,..,k—1},Va € R,p,; = @’ (*)
then
Ya € R, p,; = a”. (**)

e Proof of induction step
x Let k¥ be any natural > 1.
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x Assume (as induction hypothesis) that
Vi€ {0,1,..,k—1},Va € R, p,,; = o’
+ Remains to show Va € R, p, ;. = a”.
x Let a be any real number.
x Case that £ is odd:
- Then we Know p, 1. = a X pgi—1
-Notethat0 < k£ —1 < k.
- We have
Pa,k
= a X p,r—1Defn of p
— a x "1 Ind. Hyp.
— a,k
x Case that £ is even:
. Then by definition p,; = (o)

- Note that £ /2 is an integer and 0 < k£/2 < k.
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- We have
Pa.k
= * Defn of
= \Pa,k/2 p

— (a’“/2>2 Ind. Hyp.

e S0, by the theorem of complete mathematical induc-
tion, we have the theorem. []

By the way, this leads to an efficient algorithm for
computing exponents

double pow( double a, int p){
If(p==0)
return 1 ;
elseif(p&1)
return a * pow(a, p-1);
else {
double b = pow( a, p/2);
return b*b ; }

Typeset October 21, 2005 20



Discrete Math. for Engineering, 2005. Notes 6. Induction (© Theodore Norvell, Memorial University

Extending Complete Induction

We can be a bit more general than this, allowing the base
case to start anywhere and for multiple base cases.

Principle The theorem of complete induction (extended
version)

e For any ny and ny in Z with ny < n; and property P of
the integers

o If

x [Base steps] P(ng) and P(ny + 1) and ... and
P(n; — 1) and

x [Induction step] for all integers k£ > n,
- if for all integers j, with ng < j < k, P(j)
- then P(k)

e then, for all n € {ng,no+1,...}, P(n).

Here there are ny — ny base steps. Note that there can
even be 0 base steps.
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‘Informal Proof’ for np = 0and ny = 2
PO)AP()AP2)APB)A---
& PO)AP) A (PO)AP(1) — P(2))
A (PO)ANP()AP(2)— P(3)A---
Example 5
Define the following “Fibonacci’ sequence

fiby = 1
fib; = 1
fib, = fiby,_1 + fib,_o, ifn > 1

The Fibonacci sequence is
(1,1,2,3,5,8,13,21,34,55, - - - )
Theorem: For all natural numbers n, fib, = ca” + db"

where
L5tV 5
10 10
and
1 1 —4/5
a = +2\/5 ~ 1.61803 b= 2\/_ ~ —(0.61803
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Note. At the moment this theorem appears from “thin
air’. Later in the course, we will develop a method for
deriving this and similar theorems.

Note.

e The numbers a and b are the two solutions to the

equation

1
—=z—1

i
as you can see by the quadratic formula.

e The number a is often written ¢ and is called the
“golden ratio”.

e One conseguence of the theorem is
. f’ianrl
lim =
n—oo  fib, ¢
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.1 1 1 1
Lemma: -+ 5 =1=7++
ol i ;T

Proof of lemma:
1+1 1+1( 1) = ( 1+1)1 1
— _—= — —\a — = (q — — = Q—
a a> a a a a
And similarly for b. []
Remark: Why this lemma? In actuality, | was most of the
way through the proof of the theorem before | realized
that this lemma would be useful. For presentation

reasons it is convenient to prove it first.

=1

Proof of theorem: By complete induction with 2 base
cases.

The property P(n) is “fib, = ca" + db™”
First base step: for n = 0. We must show fiby = ca’ + db"
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Proof of first base step
ca’ + dbv’
=c+d
(5+5) + (5 —V5)
10

10

10
=1

= fiby by defn
Second base step: for n = 1. We must show
be1 = CCL1 + dbl
Proof of second base step

ca' + db'

CB5+VE 1+VE 5—5 1—4/5

~ 710 T2 T2

_ (V5 (1+vD) +(5-v5) (1-v5)
20

_ 546v5+545-6v/5+5

= 20/20 #

= 1
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Inductive step: We must show that for all integers k& > 2,
if, for all integers j, with 0 < j < k, P(j), then P(k).
e Let £ be any integer > 2.

e Assume (as the ind. hyp.) that

for all j with 0 < j < k, fib; = ca’ + db’ (*)
e In particular (as £ > 2) the ind. hyp. implies that
fiby_1 = ca” 1+ ap*~! (*1)
and that
fiby_o = ca"* + db* 2 (*2)

e It remains to show that fib;, = ca” + db

fiby = fibi_1 + fibp_o Defn of fibas k > 2
= ca" 1+ db" + ca" % 4 db¥ 2 From (*1) and (*2)
= c(a" ' +d"?) +d (a"" +0"?) Distributivity

a ab bk bk
- C(T@) +d(€+?)
1 1 11
= ca® (5 + ?> db* (5 + ﬁ) Distributivity

— ca® + db* Lemma.

So, by the theorem of complete mathematical induction,
we have proved the theorem. []
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