Induction

Properties. A property of natural numbers is a function from the natural numbers to $\{T, F\}$.

Examples

- \bullet Being odd: Define odd(n) to mean that natural number n is odd
- Being prime: Define prime(n) to mean that n is prime
- Triangular sum. Define tri(n) to mean

$$\left(\sum_{i=0}^{n} i\right) = \frac{n(n+1)}{2}$$

Of these odd and prime are not true of all natural numbers, but tri is true of all natural numbers

- $\bullet \ \neg \forall n \in \mathbb{N}, odd(n)$
- $\neg \forall n \in \mathbb{N}, prime(n)$
- $\bullet \; \forall n \in \mathbb{N}, tri(n)$

Simple Induction

Suppose we know for a property P of the natural numbers that: If

- (a) *P* is true of 0.
- (b) that for all k in N, if the property is true of k, then it is also true of k + 1.
 * I.e. (P(0) → P(1)) and (P(1) → P(2)) and

 $(P(2) \rightarrow P(3))$ and ...

Then

- \bullet From (a) we know P(0) is true
- From $(P(0) \rightarrow P(1))$ and P(0), we know P(1) is true
- From $(P(1) \rightarrow P(2))$ and P(1), we know P(2) is true
- From $(P(2) \rightarrow P(3))$ and P(2), we know P(3) is true
- and so on ad infinitum.

In fact it must be that P(n) is true for all $n \in \mathbb{N}$.

© Theodore Norvell, Memorial University

Example 0

Consider the property of *n* that $(\sum_{i=0}^{n} i) = \frac{n(n+1)}{2}$.

• (a) We define

$$tri(n)$$
 iff $\left(\sum_{i=0}^{n} i\right) = \frac{n(n+1)}{2}$

• (b) (Base Step) We will show tri(0)

• (d) (Induction Step) We will show that, for any k in \mathbb{N} , if tri(k), then tri(k+1)

© Theodore Norvell, Memorial University

Typeset October 21, 2005

- Now we have
 - * tri(0) by the base step
 - * tri(1) by the induction step and tri(0)
 - * tri(2) by the induction step and tri(1)
 - \ast and so on
- In fact we have $\forall n \in \mathbb{N}, tri(n)$. That is

$$\forall n \in \mathbb{N}, \left(\sum_{i=0}^{n} i\right) = \frac{n(n+1)}{2}$$

The Theorem of Mathematical Induction

Principle: The *"theorem of (simple) mathematical induction"* states that

Notes

- \bullet The antecedent P(k) is called the "induction hypothesis" (Ind. Hyp.)
- Proof is based on the WOP. See book.
- In applying this theorem
 - * P(0) is called the "base step"
 - * $\forall k \in \mathbb{N}, P(k) \rightarrow P(k+1)$ is called the "inductive step"

Informal "proof": Recall that $P \land Q \Leftrightarrow P \land (P \rightarrow Q)$

• In the infinite case we have

$$P(0) \land P(1) \land P(2) \land \cdots$$

$$\Leftrightarrow P(0) \land (P(0) \to P(1)) \land (P(1) \to P(2)) \land \cdots$$

A proof by the theorem of (simple) mathematical induction answers the following questions

- (a) What is the property of the natural numbers?
- (b) What do we need to prove for the base step?
- (c) What is a proof of the base step?
- (d) What do we need to prove for the inductive step?
- (e) What is a proof of the inductive step?

Example 1

We will show that, for all $n \in \mathbb{N}$,

$$\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6$$

Proof:

(a) Let P(n) be the property of a natural number n that $\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6$

• (b) Base Step: We need to show P(0), i.e.

$$\sum_{i=1}^{0} i^2 = 0(0+1)(0n+1)/6$$

* (c) Proof of Base Step: The LHS is 0 since the sum

Typeset October 21, 2005

of 0 things is always 0. The RHS simplifies to 0. Thus P(0) holds.

• (d) Induction Step. We need to show that $\forall k \in \mathbb{N}$, if

$$\sum_{i=1}^{k} i^2 = k(k+1)(2k+1)/6 \tag{(*)}$$

then

$$\sum_{i=1}^{k+1} i^2 = (k+1)((k+1)+1)(2(k+1)+1)/6 \qquad (**)$$

- * (e) Proof of Induction Step
- * Let k be any natural number.
- * Assume (Induction Hypothesis)

$$\sum_{i=1}^{k} i^2 = k(k+1)(2k+1)/6$$

* We need to show (**).

$$LHS = \sum_{i=1}^{k+1} i^{2}$$

$$= (k+1)^{2} + \sum_{i=1}^{k} i^{2} \text{ Split off last term}$$

$$= (k+1)^{2} + k(k+1)(2k+1)/6 \text{ By the ind. hyp. (*)}$$

$$= k^{2} + 2k + 1 + \frac{(k^{2}+k)(2k+1)}{6} \text{ Expand}$$

$$= k^{2} + 2k + 1 + \frac{2k^{3} + 3k^{2} + k}{6} \text{ Expand}$$

$$= \frac{2k^{3} + 9k^{2} + 13k + 6}{6} \text{ Put over common denom.}$$

*

$$= \frac{RHS}{(k+1)((k+1)+1)(2(k+1)+1)}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6} \text{ Adding}$$

$$= \frac{(k^2+3k+2)(2k+3)}{6} \text{ Expand}$$

$$= \frac{2k^3+9k^2+13k+6}{6} \text{ Expand}$$
* Thus we have (**)

• By the theorem of mathematical induction we have $\forall n \in \mathbb{N}, P(n)$.I.e. for all natural n,

$$\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6$$

Example 2 If $|S| \in \mathbb{N}$ then $|\mathcal{P}(S)| = 2^{|S|}$.

Recall that $\mathcal{P}(S)$ is the set of all subsets of S

Proof:

- (a) Let P(n) (for $n \in \mathbb{N}$) mean: for all sets S, if |S| = n then $|\mathcal{P}(S)| = 2^n$
- We must show $\forall n \in \mathbb{N}$, for all sets S, if |S| = n then $|\mathcal{P}(S)| = 2^n$
- (b) Base Step: We must show that all sets of cardinality 0 have a power set of size 2⁰.
- (c) Proof of Base step:
 - * There is only one set of size 0 namely \emptyset . The power set of \emptyset is $\{\emptyset\}$ and has size 1, which equals 2^0
- (d) Induction Step: We must show that, for all k ∈ N, if all sets of size k have a power set of size 2^k, then all sets of size k + 1 have a power set of size 2^{k+1}.
- (e) Proof of induction step:
 - * Let k be any natural number.
 - * Assume (as Induction Hypothesis) that all sets of size k have a power set of size 2^k .

- * Remains to prove: All sets of size k + 1 have power sets of size 2^{k+1}
- * Let S be any set of size k + 1.
- * Let x be any member of S.
- * We can partition $\mathcal{P}(S)$ into two disjoint sets $Q = \{T \subseteq S \mid x \notin T\}$ and $R = \{T \subseteq S \mid x \in T\}$.
- * Note. $\mathcal{P}(S) = Q \cup R$ and $Q \cap R = \emptyset$ So $|\mathcal{P}(S)| = |Q| + |R|$.
- * Also note that each element of R can be obtained from an element of Q by "unioning in" x.
- * And each element of Q can be obtained from an element of R by "subtracting out" x.
- * So |Q| = |R|.
- * Finally note that $Q = \mathcal{P}(S \{x\})$ and since $|S \{x\}| = k$ we have (by the ind. hyp.) $|Q| = 2^k$ * $|\mathcal{P}(S)| = |Q| + |R| = |Q| + |Q| = 2 \times 2^k = 2^{k+1}$
- By the theorem of mathematical induction $\forall n \in \mathbb{N}$, for all sets *S*, if |S| = n then $|\mathcal{P}(S)| = 2^n$

Example of the construction of Q and R

© Theodore Norvell, Memorial University

Extending the principle

What if P(0) isn't true? Or isn't meaningful. We can start from P(1) or P(2) and so on; even from P(-42).

Principle: The theorem of (simple) mathematical induction (extended version).

• For any property P of the integers and $n_0 \in \mathbb{Z}$ * if $P(n_0)$ and

* for all
$$k \in \{n_0, n_0 + 1, ...\}$$
, if $P(k)$ then $P(k+1)$

* then $\forall n \in \{n_0, n_0 + 1, ...\}, P(n)$

Example 3: Call a set of straight lines in a plane "independent" if any two lines meet at a point and no three lines meet at a point.

Theorem. For $n \in \{1, 2, ...\}$ any set of n independent lines divides the plane into $\frac{n^2+n+2}{2}$

Proof

© Theodore Norvell, Memorial University

 So, by the theorem of simple mathematical induction (extended version) we have proved the theorem. □

Complete Induction

We can use a stronger induction hypothesis.

This often make the proof much easier.

Principle The theorem of complete mathematical induction:

The induction hypothesis here is:

 \bullet "for all integers j, with $0 \leq j < k,$ P(j) " .

© Theodore Norvell, Memorial University

'Informal Proof': $P(0) \land P(1) \land P(2) \land P(3) \land \cdots$ $\Leftrightarrow P(0) \land (P(0) \rightarrow P(1))$

$$P(0) \land (P(0) \to P(1)) \land (P(0) \land P(1) \to P(2)) \land (P(0) \land P(1) \land P(2) \to P(3)) \land \cdots$$

Example 4

Consider the family of sequences defined by

$$p_{a,0} \triangleq 1$$

$$p_{a,n} \triangleq a \times p_{a,n-1} \text{ if } n > 0 \text{ and } n \text{ is odd}$$

$$p_{a,n} \triangleq (p_{a,n/2})^2 \text{ if } n > 0 \text{ and } n \text{ is even}$$

(For each value for a we get a sequence $p_{a,0}$, $p_{a,1}$, ...) Make a table or two:

$n \hspace{0.1in} p_{2,n}$		$n p_{3,n}$
a = 2: a = 2: a = 2: a = 2 a	a = 3:	0 1
		1 3
		29
		3 27
4 16		4 81
	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$

Theorem: for all $n \in \mathbb{N}$, $a \in \mathbb{R}$, we have $p_{a,n} = a^n$.

Note: For the purpose of this theorem we will consider $0^0 = 1$.

Proof by complete induction.

- Let Q(n) mean that "for all $a \in \mathbb{R}$, we have $p_{a,n} = a^n$ "
- Base step: We must show that Q(0). I.e. that for all $a \in \mathbb{R}$, we have $p_{a,0} = a^{0}$ "
- Proof of base step:

 \ast Let a be any real number.

* $RHS = p_{a,0} = 1$, by defn of p

$$*LHS = a^0 = 1$$

Induction step: We must show that, for all k ≥ 1, if Q(j), for all j ∈ {0, 1, ..., k − 1}, then Q(k).
I.e. for all k ≥ 1, if

$$\forall j \in \{0, 1, .., k-1\}, \forall a \in \mathbb{R}, p_{a,j} = a^j$$
 (*)

then

$$\forall a \in \mathbb{R}, p_{a,k} = a^k. \tag{**}$$

Proof of induction step

* Let k be any natural ≥ 1 .

Typeset October 21, 2005

* Assume (as induction hypothesis) that $\forall j \in \{0, 1, ..., k - 1\}, \forall a \in \mathbb{R}, p_{a,j} = a^j$ * Remains to show $\forall a \in \mathbb{R}, p_{a,k} = a^k$. * Let *a* be any real number. * Case that *k* is odd: · Then we know $p_{a,k} = a \times p_{a,k-1}$ · Note that $0 \le k - 1 < k$. · We have $p_{a,k}$

$$p_{a,k}$$

$$= a \times p_{a,k-1} \text{Defn of } p$$

$$= a \times a^{k-1} \text{ Ind. Hyp.}$$

$$= a^k$$

* Case that k is even:

- · Then by definition $p_{a,k} = (p_{a,k/2})^2$
- Note that k/2 is an integer and $0 \le k/2 < k$.

© Theodore Norvell, Memorial University

· We have

$$p_{a,k} = \left(p_{a,k/2}
ight)^2$$
 Defn of p
 $= \left(a^{k/2}
ight)^2$ Ind. Hyp.
 $= a^k$

 So, by the theorem of complete mathematical induction, we have the theorem.

By the way, this leads to an efficient algorithm for computing exponents

```
double pow( double a, int p ) {
    if( p == 0 )
        return 1 ;
    else if( p & 1 )
        return a * pow( a, p-1 ) ;
    else {
        double b = pow( a, p/2 ) ;
        return b*b ; }
}
```

Extending Complete Induction

We can be a bit more general than this, allowing the base case to start anywhere and for multiple base cases.

Principle The theorem of complete induction (extended version)

- For any n_0 and n_1 in \mathbb{Z} with $n_0 \leq n_1$ and property P of the integers
- If
 - * [Base steps] $P(n_0)$ and $P(n_0+1)$ and \ldots and $P(n_1-1)$ and
 - * [Induction step] for all integers $k \ge n_1$
 - · if for all integers j, with $n_0 \leq j < k$, P(j)
 - \cdot then P(k)
- then, for all $n \in \{n_0, n_0 + 1, ...\}, P(n)$.

Here there are $n_1 - n_0$ base steps. Note that there can even be 0 base steps.

© Theodore Norvell, Memorial University

'Informal Proof' for
$$n_0 = 0$$
 and $n_1 = 2$
 $P(0) \land P(1) \land P(2) \land P(3) \land \cdots$
 $\Leftrightarrow P(0) \land P(1) \land (P(0) \land P(1) \rightarrow P(2))$
 $\land (P(0) \land P(1) \land P(2) \rightarrow P(3)) \land \cdots$

Example 5

Define the following "Fibonacci" sequence

$$\begin{array}{l} fib_0 \ \triangleq \ 1\\ fib_1 \ \triangleq \ 1\\ fib_n \ \triangleq \ fib_{n-1} + fib_{n-2}, \text{ if } n > 1 \end{array}$$

The Fibonacci sequence is $\langle 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \cdots \rangle$

Theorem: For all natural numbers n, $fib_n = ca^n + db^n$ where

$$c = \frac{5 + \sqrt{5}}{10} \qquad d = \frac{5 - \sqrt{5}}{10}$$
$$a = \frac{1 + \sqrt{5}}{2} \simeq 1.61803 \qquad b = \frac{1 - \sqrt{5}}{2} \simeq -0.61803$$

Typeset October 21, 2005

and

Note. At the moment this theorem appears from "thin air". Later in the course, we will develop a method for deriving this and similar theorems.

Note.

 \bullet The numbers a and b are the two solutions to the equation

$$\frac{1}{x} = x - 1$$

as you can see by the quadratic formula.

- The number a is often written ϕ and is called the "golden ratio".
- One consequence of the theorem is

$$\lim_{n \to \infty} \frac{fib_{n+1}}{fib_n} = \phi$$

© Theodore Norvell, Memorial University

Lemma: $\frac{1}{a} + \frac{1}{a^2} = 1 = \frac{1}{b} + \frac{1}{b^2}$ Proof of lemma: $\frac{1}{a} + \frac{1}{a^2} = \frac{1}{a} + \frac{1}{a}(a-1) = (a-1+1)\frac{1}{a} = a\frac{1}{a} = 1$ And similarly for *b*.

Remark: Why this lemma? In actuality, I was most of the way through the proof of the theorem before I realized that this lemma would be useful. For presentation reasons it is convenient to prove it first.

Proof of theorem: By complete induction with 2 base cases.

The property P(n) is " $fib_n = ca^n + db^n$ "

First base step: for n = 0. We must show $fib_0 = ca^0 + db^0$

© Theodore Norvell, Memorial University

Proof of first base step

$$ca^{0} + db^{0}$$

$$= c + d$$

$$= \frac{(5 + \sqrt{5}) + (5 - \sqrt{5})}{10}$$

$$= \frac{10}{10}$$

$$= 1$$

$$= fib_{0} \text{ by defn}$$

Second base step: for n = 1. We must show $fib_1 = ca^1 + db^1$

Proof of second base step

$$= \frac{ca^{1} + db^{1}}{10} \cdot \frac{5 + \sqrt{5}}{2} + \frac{5 - \sqrt{5}}{10} \cdot \frac{1 - \sqrt{5}}{2}$$

$$= \frac{(5 + \sqrt{5})(1 + \sqrt{5}) + (5 - \sqrt{5})(1 - \sqrt{5})}{20}$$

$$= \frac{5 + 6\sqrt{5} + 5 + 5 - 6\sqrt{5} + 5}{20}$$

$$= 20/20$$

$$= 1$$

Typeset October 21, 2005

Inductive step: We must show that for all integers $k \ge 2$, if, for all integers j, with $0 \le j < k$, P(j), then P(k).

- Let k be any integer ≥ 2 .
- Assume (as the ind. hyp.) that for all j with $0 \le j < k$, $fib_j = ca^j + db^j$
- In particular (as $k \ge 2$) the ind. hyp. implies that

$$fib_{k-1} = ca^{k-1} + db^{k-1} \tag{*1}$$

and that

$$fib_{k-2} = ca^{k-2} + db^{k-2} \tag{*2}$$

• It remains to show that $fib_k = ca^k + db^k$

$$\begin{aligned} fib_k &= fib_{k-1} + fib_{k-2} \text{ Defn of } fib \text{ as } k \ge 2 \\ &= ca^{k-1} + db^{k-1} + ca^{k-2} + db^{k-2} \text{ From (*1) and (*2)} \\ &= c\left(a^{k-1} + a^{k-2}\right) + d\left(a^{k-1} + b^{k-2}\right) \text{ Distributivity} \\ &= c\left(\frac{a^k}{a} + \frac{a^k}{a^2}\right) + d\left(\frac{b^k}{b} + \frac{b^k}{b^2}\right) \\ &= ca^k \left(\frac{1}{a} + \frac{1}{a^2}\right) + db^k \left(\frac{1}{b} + \frac{1}{b^2}\right) \text{ Distributivity} \\ &= ca^k + db^k \text{ Lemma.} \end{aligned}$$

So, by the theorem of complete mathematical induction, we have proved the theorem. $\hfill\square$

Typeset October 21, 2005

(*)