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Graphs
Reading: §10.1, 10.2 10.3 (opt.), 10.4 (opt.), 10.5 (mostly
opt.), 10.5.3, 10.6 (mostly opt.)

Basic Definitions

Graphs are useful for describing relationships between
objects in more complex ways than can be achieved by
functions and relations.

Defns:
• A (undirected) graph G = (V,E, φ) consists of
∗ a set of vertices V ,
∗ a set of edges E, and
∗ an incidence function φ : E → P(V )

such that for all e ∈ E, |φ(e)| ∈ {1, 2}
• If v ∈ φ(e) we call v an endpoint of e.

• So each edge has 1 or 2 endpoints.

• When |φ(e)| = 1 we call e a loop.

• Note: Singular of “vertices” is “vertex”

• Vertices are often called nodes and edges arcs
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Example: G0 = (V0, E0, φ0) where
• V0 = {0, 1, 2, 3}
• E0 = {a, b, c, e, d, f} with |E0| = 6

• φ0 is defined by

a 7→ {0}
b 7→ {0, 1}
c 7→ {1, 2}
d 7→ {2, 3}
e 7→ {0, 3}
f 7→ {0, 3}
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Defn: A graph is called simple iff φ is one-one (no
double edges) and for all e ∈ E, |φ(e)| = 2 (no loops).

Example: G1 is obtained from G0 by eliminating edges a
and f . G1 is a simple.
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Walks and connectivity
Defns: A walk in an undirected graph G = (V,E, φ) is a
sequence of vertices and edges

(v0, e1, v1, e2, ..., ek, vk)

such that φ(ei) = {vi−1, vi} for all i ∈ {1, 2, ..., k}.
v0 and vk are called the endpoints of the walk and the
walk is from v0 to vk.

The length of the walk is the number of edges, k, and
can be 0.

A trail is a walk without repeated edges.

A path is a walk without repeated vertices.

Example: In G0 we have many walks, one example is
(3, e, 0, a, 0, f, 3, d, 2)

This is a walk of length 4 from vertex 3 to vertex 2 and is
a trail, but not a path
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More examples in G0
Walk Trail Path Length

(1) X X X 0
(0, a, 0) X X 1
(0, a, 0, e, 3, f, 0) X X 3
(0, a, 0, e, 3, e, 0) X 3
(0, f, 1, c, 3) ×

A graph G is said to be connected if there is a walk from
any vertex in G to any vertex in G.

Example: G0 is connected. The graph G2 is not.

G2 :

0 1

2
3

a

c
e f

A connected region is a maximal set of vertices such
that there is a walk from any vertex in the set to any
other. (“Maximal” meaning that adding any other vertex
to the region would violate this condition.)

Example: The connected regions of G2 are {0, 3} and
{1, 2}.
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Example Applications:
• Consider a power grid. The vertices are the stations

(power stations, substations, etc.) The edges are
functional transmission lines. The graph is connected
if (some) power can be transmitted from any station to
any other.

• Face recognition. Consider a digital photograph. The
vertices are pixels that meet some specified criterion
e.g. colour range is roughly that of human skin. There
is an edge between pixels that are distance 1 apart.
The connected regions represent potential faces.

Finding connected regions. There are many ways.

Defn: An adjacency matrix A for a graph G = (V,E, φ)
with V = {v0, v1, ...vn−1} is an n by n matrix such that

ai,j =

⎧⎪⎪⎨⎪⎪⎩
0 if there is no edge e with φ(e) = {vi, vj}
1 if there is 1 edge e with φ(e) = {vi, vj}
2 if there are 2 edges e with φ(e) = {vi, vj}
... ...

ai,j = |{e ∈ E | φ(e) = {vi, vj}}| , for all 0 ≤ i, j < n
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Example: For graph G0 we have

A0 =

⎡⎢⎢⎣
1 1 0 2
1 0 1 0
0 1 0 1
2 0 1 0

⎤⎥⎥⎦
For graph G2 we have

A2 =

⎡⎢⎢⎣
1 0 0 2
0 0 1 0
0 1 0 0
2 0 0 0

⎤⎥⎥⎦
Note A is a symmetric matrix.

Note that loops are counted only once. [Contrary to the
example in the book.]

Note that if deg(v) is the number of edges incident with v
(counting each loop twice) and if loop(v) is the number of
loops incident with v then the sum of row (or column) i is
deg(vi)− loop(vi).
Note that I (the identity matrix) gives the number of
walks of length 0 between pairs of vertices and A gives
the number of walks of length 1 between pairs of vertices
and A2 = AA gives the number of walks of length 2
between vertices.
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Example: A20 =

⎡⎢⎢⎣
1 1 0 2
1 0 1 0
0 1 0 1
2 0 1 0

⎤⎥⎥⎦
⎡⎢⎢⎣
1 1 0 2
1 0 1 0
0 1 0 1
2 0 1 0

⎤⎥⎥⎦ =
⎡⎢⎢⎣
6 1 3 2
1 2 0 3
3 0 2 0
2 3 0 5

⎤⎥⎥⎦.

Consider the ensquared entry, representing the number
of walks from 0 to 2.

This is the dot product the underlined row and column
[1, 1, 0, 2] · [0, 1, 0, 1]

These entries represent the following sets of length one
walks.

k: 0 1 2 3
Walks from 0 to k: [{(0, a, 0)}, {(0, b, 1)} , ∅, { (0, e, 3) ,

(0, f, 3)}]
Walks from k to 2: [∅, {(1, c, 2)} , ∅, {(3, d, 2)}]
Combining these we get the following sets of walks of
length 2

k: 0 1 2 3
Walks fr 0 to 2 via k: [∅, {(0, b, 1, c, 2)} , ∅, { (0, e, 3, d, 2) ,

(0, f, 3, d, 2)}]
Counting all these length two walks, we get 3.
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In general:

Theorem: If A is an adjacency matrix for G = (V,E, φ)
with V = {v0, v1, ...vn−1}, k ∈ N and B = Ak then bi,j is
the number of walks from vi to vj with length k.

Proof: By induction on k.

Corollary: vi and vj are in the same connected region iff

entry i, j in A∗ =
|V |−1P
k=0

Ak is not 0.

Corollary: G is connected iff A∗ has no 0 entries.

Calculating A∗

B := I ; C := I ;
int j := 0 ;

// Invariant: B = Aj and C =
jP

k=0

Ak

while( j < n− 1 ) {
B := AB ;
C := C +B ;
j := j + 1 }

// At this point: C = A∗
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Example:

A∗0 = I +A +A2 +A3 =

⎡⎢⎢⎣
19 11 6 19
11 4 6 5
6 6 3 9
19 5 9 10

⎤⎥⎥⎦
Application:
• Consider a computer network with point-to-point

bidirectional links. Can every computer communicate
with every other in less than 6 hops?

∗ Calculate
6P

k=0

Ak

• Consider a graph where V is a set of actors and we
have an edge with endpoints {u, v} if u and v have
appeared in the same movie. For a given actor, u, can
u be connected to Kevin Bacon in 6 hops or less?
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Colouring graphs
Defn. A k-colouring of a graph. G = (V,E, φ) is any
function f from V to a set of size k ∈ N such that for all
e ∈ E and v, u ∈ V,

if φ(e) = {u, v} then f(u) 6= f(v)

Informally, a k-colouring assigns each vertex one of k
colours such that the endpoints of no edge are coloured
the same.

Example: For G1 the colouring function f(0) = f(2) =
red , f(1) = f(3) = green is a 2-colouring.

Example: Consider K5 which is a graph with 5 vertices
where each pair of vertices is connected by an edge.

0

1

23

4
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It has a 5 colouring f(i) = i for each i ∈ {0, 1, ..., 4}
A k-colouring of G is optimal if there is no (k − 1)-
colouring of G.

Both the examples above are optimal.

Defn. The chromatic number, χ(G), of a graph, G, is
the smallest k such that G has a k-colouring.

Applications of colouring
• Assigning frequencies (or time slots) to stations on a

wireless network.

• Grouping traces in PCB testing (see slide set 0).

• Scheduling exams

• Assigning registers to variables when compiling
computer programs.

• In general: allocating scarce resources.

Bad news: We know of no algorithm that
• can find an optimal k-colouring for any finite graph,

and

• can do so quickly for many large graphs.

Good news:

Typeset November 29, 2005 11

Discrete Math. for Engineering, 2005. Notes 9. Graphs c° Theodore Norvell, Memorial University

• A planar graph is one that can be drawn on a sheet of
paper such that no two edges cross each other.

• A planar graph can be coloured with only four colours.
(Proved 1976 after about 80 years of investigation.)
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Directed graphs
Defns: A directed graph, D = (V,E, φ), consists of
• A set of vertices, V

• A set of edges, E

• A function φ : E → (V × V )

If φ(e) = (u, v) then u is called the initial vertex of e, and
v is called the terminal vertex of e, and if u = v then e is
called a loop.

D is called simple if it has no loops and φ is one-one.

Example: D0 has
• V0 = {v, w, x, y, z}
• E0 = {a, b, c, d, e, f, g}
• φ0is defined by a 7→ (w, v)

b 7→ (v, x)
c 7→ (x,w)
d 7→ (x, y)
e 7→ (x, z)
f 7→ (y, z)
g 7→ (z.y)

v
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d

c

b
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• D0 is simple.

Defns:
• A directed walk in D = (V,E, φ) is an alternating

sequence of vertices and edges
(v0, e1, v1, ..., vi−1, ei, vi, ..., ek, vk)

such that φ(ei) = (vi−1, vi) for all i ∈ {1, 2, ..., k}.
• The length of a directed walk is the number of edges.

• The walk is said to be from v0 to vk .

Example: In D0 we have walks
(v)

(v, b, x)

(v, b, x, d, y, f, z, g, y)

Defn. An adjacency matrix, A, for a directed graph,
D = (V,E, φ), where V = {v0, v1, ..., vn−1}, is defined by

ai,j =

⎧⎪⎪⎨⎪⎪⎩
0 if there is no edge e with φ(e) = (vi, vj)
1 if there is 1 edge e with φ(e) = (vi, vj)
2 if there are 2 edges e with φ(e) = (vi, vj)
... ...

I.e.
ai,j = |{e ∈ E | φ(e) = (vi, vj)}| , for all 0 ≤ i, j < n
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Example: If we order the vertices of D0 alphabetically,
its adjacency matrix is

A0 =

⎡⎢⎢⎢⎢⎣
0 0 1 0 0
1 0 0 0 0
0 1 0 1 1
0 0 0 0 1
0 0 0 1 0

⎤⎥⎥⎥⎥⎦
Theorem: If A is an adjacency matrix for D = (V,E, φ),
the number of directed walks of length k from vi to vj is
entry i, j in Ak, for all k ∈ N, vi, vj ∈ V .

Proof: Induction on k.

Defn A directed graph, D = (V,E, φ), is strongly
connected if there is a walk from every vertex to every
other vertex.

Example: C5 is a graph with 5 vertices {v0, v1, ..., v4} and
5 edges {e0, e1, ..., e4} with each ei from vi to v(i+1)mod 5.

Counter-example: D0 is not strongly connected.

A directed graph is strongly connected iff A|V |−1 has no
zero entries.
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Weighted directed graphs
If D = (V,E, φ) is a directed graph, an edge-weighting of
D is a function, λ, from E to some range set.

Shortest path problem

Suppose that weights represent distances.

And we want to know the minimal distance from one
vertex, a, to each other vertex.

We will assume all distances are real and positive.

Define the weight of a directed walk p =
(v0, e1, v1, ..., vi−1, ei, vi, ..., ek, vk) as

λ(p) ,
kX
i=1

λ(ek)

We want to calculate, for each z,
d(z) = min

p is a directed walk from a to z
λ(p)
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• Start at a and work outward discovering shortest walks
in the order of their size.

• Black vertices: we know d(v).

• Grey vertices are one edge away from a black vertex.
They are labeled by the weight of the best path we
know that is all black up to the last vertex.

• At each step we pick the grey vertex that has the
lowest label and turn it black.
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Dijkstra’s shortest path algorithm

for each v ∈ V do s(v) :=∞
s(a) := 0.0 ; Black := ∅ ; Grey := {a}
// Invariant: Black ,Grey ⊆ V and Black ∩Grey = ∅
// and ∀v ∈ Black ,∀w ∈ Grey , d(v) = s(v) ≤ s(w)
// and ∀w ∈ Grey , s(w) = the length of the shortest path
// from a to w by a path that includes only Black
// vertices and w.
// and ∀v ∈ V − Black −Grey , s(v) =∞
while Grey 6= ∅ do

let v be a member of Grey such that s(v) is minimal
for each vertex w s.t. there is an edge from v to w

if w 6∈ Black then
s(w) := s(w)min(s(v) + λ(v, w))
Grey := Grey ∪ {w}

Grey := Grey − {v}
Black := Black ∪ {v}

// At this point s(v) = d(v) for all v ∈ V .
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Applications:

Dijkstra’s shortest path algorithm is easily extended to
find an optimal walk from a to each other vertex.
• Create a second graph with the same vertices and

originally no edges.

• When a shorter path is found to a vertex w, (i.e. when
s(w) > (s(v) + λ(v, w))) delete any edge that is to w
and add a new edge from v to w.

• When done, the only path from a to any v in the new
graph is a shortest path in the original

Thus it is very useful for plotting optimal routes
• In computer networks, we can find the fastest route.

• Robots can plot the shortest route to a goal while
avoiding obstacles.

• Ships can plot courses that avoid sea ice.

It may seem wasteful to find the shortest route to all
places, when one only wishes to go to one. One can
stop when the destination becomes black. And there is a
variant called A* that is more efficient, but requires more
information.
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