
Lab Assignment 3.

Lab Mon June 28. Due Wed Jun 30, 23:00.

Data Structures Engi4892 2004. T. Norvell

0 In-place, linked list, recursive quicksort.

Design, implement, and test a set of subroutines that will rearrange the
nodes in a null-terminated, singly-linked list to be in sorted order using
the recursive quicksort method. Note that no nodes should be created or
destroyed by your subroutines.

The signature for your subroutine will be

void quickSort(Node *&head) ;

where Node is deÞned by

struct Node { int data; Node *next ; } ;

Notes:

� Websubmit as Þle quicksort.cpp, assignment 3, part 0.
� Bonus Marks: Of the submissions that pass all tests and have an �ac-
ceptable level of style marks�, the fastest implementation on a random
list will be given a 50% bonus. Please carefully document any design
decisions that you make in the name of speed.

1 Search Engine

Design, implement, and test a query method for search engines.
Internet search engines must be able to identify which documents contain

which words. The more useful search engines allow complex queries using
boolean operators such as �and�, �or� and �not�. For this assignment you
write a subroutine that calculates which documents match a given query.

0

For querying purposes, each document can be regarded as a set of words.
Our entire database of documents can be regarded as a function from doc-
ument name (URL) to the set of words in the document. E.g. the test
database is this function

database

= { (www.fwords.com, {foo, firkin, farthing, funk, ...}),
(www.music.com, {funk, rock, jazz, punk, ...}),
(www.unkious.com, {funk, sunk, punk, ...}) }

To make querying more efficient, this database has been processed to
yield an index. The index is a function from each word to the set of all
names of documents containing the word

index

= { (funk, {www.fwords.com,www.music.com,www.unkious.com}),
(punk, {www.music.com,www.unkious.com}),
(jazz, {www.music.com}),
(sunk, {www.unkious.com}),
... }

Also precomputed is the set of all Þlenames:

all = {www.fwords.com,www.music.com,www.unkious.com}
Queries, are typed in by the user as strings such as:

NOT (punk AND (Þltrum OR jazz))

These have been stored in the computer memory as trees such as:0

NOT

AND

OR

jazz

punk

filtrum

0The problem of getting from a string to a tree representing its structure is called
�parsing� and is quite important also in designing compilers and other language processors.
See Chapter 5 (section on deÞning languages) of the text for some ideas on how to parse
strings using recursive routines.

1

I have represented these trees using 4 classes. There is a class for AND
nodes, a class for OR nodes, a class for NOT nodes, and a class for STRING
nodes (i.e. the nodes that represent single word queries).

All 4 of these classes are derived from (i.e. inherit from) a class called
QueryNode.1 The inheritance structure looks like this:

class QueryNode { ... } ;
class StringNode : public QueryNode {... } ;
class AndNode : public QueryNode { ... } ;
class OrNode : public QueryNode { ... } ;
class NotNode : public QueryNode { ... } ;

Instances of the last three classes are connected by pointers to the nodes
below them. For example, the AndNode object in the illustration has two
pointers; one (its leftChild_) points to the StringNode object for �punk�; the
other (its rightChild_) points to the OrNode object:

class AndNode : public QueryNode {
...
private:

QueryNode *leftChild_ ;
QueryNode *rightChild_ ;

} ;

Instances of the StringNode contain their word as a ch_string.
Class QueryNode declares a virtual function evaluate but does not deÞne

it.2

1QueryNode is an example of a �abstract class�. I.e. it is a class we do not intend to
create direct instances of; its purpose is to serve as a base class for other classes.

2Recall that with virtual functions the function deÞnition used depends on the actual
class of recipient object. Suppose p is declared

QueryNode *p ;

but it contains the address of an AndNode (which is perfectly legitimate, since AndNode
is derived from QueryNode). A call

p->evaluate(...)

will call the function AndNode::evaluate,rather than QueryNode::evaluate.

2

class QueryNode
{

public :

// Evaluate the query for a given database.
virtual StringSet evaluate(const Index &index, const StringSet
&all) = 0 ;

...
} ;

The purpose of evaluate is to calculate the set of document names match-
ing the query. The type it returns �StringSet� is simply an abbreviation
for Set<ch_string>, and the type of its Þrst parameter �Index� is simply
an abbreviation for Function<ch_string, StringSet>.

Design, implement, and test the evaluate subroutine for each of the 4
classes derived from QueryNode.

Put all 4 function deÞnitions (together with any auxiliary functions) in
a Þle called query_tree.cpp and submit it as assignment 3.

Notes:

� Your Þle should #include Þle query_tree.h. This should include any-
thing else you need.

� Your 4 functions will be mutually recursive: e.g. to evaluate an AND
node, Þrst evaluate its left and right parts and then combine the results
appropriately.

� I have deÞned a second virtual function member called print (see Þle
query_print.cpp). It may give you some inspiration.

� If a word is not in the domain of the index, then it does not occur
in any document in the database. Be careful not to apply the index
function to something not in its domain.

� All Þles needed to test your deÞnitions will be made available at
www.engr.mun.ca/~theo/Courses/ds/. Let me know immediately if
you have any problems with these Þles.

� Put all your code in a Þle query_tree.cpp. Websubmit as assignment
3 part 1.

3

