
Quiz 0

Data Structures, 1999.

June 9, 1999

Total marks: 30
Name:
Student #:
Answer each question in the space provided or on the back of a page with an

indication of where to Þnd the answer.
Q0 [6]
I have implemented the Function abstract data type with a doubly-linked

list data-structure.
(a) Explain why the programmer using my implementation does not need to

know that I have used doubly-linked list to implement the ADT.
The Function ADT describes the use of the class without reference to any

particular implementation. Therefore the use of my class does not depend on
which implementation techniques I have chosen.
(b) Explain why the data members of the class used to represent Functions

is best declared as �private�.
(i) This prevents client code from depending on the method of implementa-

tion. Only the operations documented in the ADT should be public.
(ii) Any error in the manipulation or interpretation of these data members

is isolated to the member functions of the class. This makes error correction
much easier, as the location of an error that corrupts or misinterprets the data
members is narrowed down to the class. Client code is likely not to be to blame.
(c) Explain why, assuming templates are used, I do not need to know what

the programmer using my implementation will use it for.
Using templates removes the need for the Function class to depend on the

type of the data it is storing. Another programmer can use my class to store
data of any type that supports certain operations (in this case assignment and
comparison of the domain elements).
Q1 [5]
What are the relative advantages of an array based implementation of the

Set ADT over a linked list implementation of the same ADT? What are the
disadvantages?
There are three important advantages to the linked list implementation.
(i) Arrays, being Þxed in size, likely waste space.
(ii) Arrays, being Þxed in size, may run out of space, when there is lots of

room on the heap.

1

(iii) Construction, destruction, copying, and assignment of array based im-
plementations may waste time.
Some less important matters: Arrays run out of space predictably. Arrays

may actually save space, since there is no pointer overhead, but you must cor-
rectly anticipate the required maximum size. If the array is kept sorted, then
Þnding if an element is in the set is faster than with a linked list.
Q2 [4]
Consider the following speciÞcation.

� void foo() ;
� May change: i
� Precondition: i > 0
� Postcondition: i0 = −i

For each of the following function deÞnitions, state whether or not it
meets this speciÞcation.
A subroutine meets its speciÞcation if whenever its precondition is true ini-

tially, it ensures that its postcondition is true and it does not change any vari-
ables it should not.
Note that this means it is the callers responsibility to ensure the precondition

is true and the implementer�s responsibility to ensure the postcondition is true.
In this case, a subroutine will meet the speciÞcation if, whenever the initial

value of i is greater than 0, the Þnal value of i is the negation of the initial value
of i, and only i may change.

� 1. void foo(void){ i = -i ; } � Yes. When i is initially positive, it
is Þnally the negation of the initial value. (Note that even it i is
negative or 0, the postcondition is still true, but this is irrelevant in
determining if the speciÞcation is met.)

2. void foo(void){ j= -i; i=j ; } � No. j is changed.

3. void foo(void){ assert(i>0) ; i = -i ; } � Yes. In this case the
precondition is checked. This is good practice to ensure the subroutine
is not misused, but irrelevant to whether the speciÞcation is met.

4. void foo(void){ if(i > 0){ i = -i ; } else { i = 0 ; } } � Again
what happens when i is not initial positive is irrelevant. In this case
setting i to 0 is arguably poor practice.

Q3 [15]
A list is called sorted if data that comes nearer the beginning of the list is

never larger than data that comes later in the list. E.g. 1,1,2,2,2,3,6,8,9,9 is
sorted whereas 1,2,3,3,2,1 is not. Write a function that eliminates all du-
plicates from a sorted list. For example 1,1,2,2,2,6,8,9,9 becomes 1,2,6,8,9.

2

Lists are represented by pointers to nodes, with the NULL pointer (0) mark-
ing the end of the list. Any nodes that are removed from the list should be deleted
from the heap. Nodes are deÞned as:

struct Node { int data ; Node* next; }

Complete this function:

void removeDuplicates(Node * &head)
{

Node* current = head ;
while(current != 0) {

if(current->next != 0 && current->data == current->next->data) {
Node *zombie = current->next ;
current->next = current->next->next ;
delete zombie ; }

else {
current = current->next ; }

}
// Or
void removeDuplicates(Node * &head)
{

Node* current = head ;
while(current != 0) {

while(current->next != 0 && current->data == current->next->data
) {

Node *zombie = current->next ;
current->next = current->next->next ;
delete zombie ; }

current = current->next ; }
}

Marking notes:

� PNPD means Potential Null Pointer Dereference.
� DNPD means DeÞnite Null Pointer Dereference
� NN means Not Needed
� PNI means potentially not initialized.

3

