
Quiz 1 Solutions

Data Structures, 1999.

June 30, 1999

Total marks: 30
Name: Theo Norvell
Student #:
Answer each question in the space provided or on the back of a page with an

indication of where to Þnd the answer.
Linked lists are represented by pointers to nodes, with the NULL pointer

(0) marking the end of the list. Any nodes that are removed from the list should
be deleted from the heap. Nodes are deÞned as:

struct Node { int data ; Node* next; }

Q0 [7]
Consider:

static int count = 0 ;
int abc(int x) {

count += 1 ;
if(x == 0) return 0 ;
else if(x == 1) return 1 ;
else {

int s = abc(x / 2) ;
int t = abc((x+1)/2) ;
return s+t+x ;} }

void main() { cout << abc(32) << �\n� ; cout << count << �\n� ; }

What number will be printed by this program? Hint: remember that integer
division of positive numbers rounds down.
Solution 192 63
Explanation:
The subroutine computes a function. We can see that for an even x, abc(x) =

1

x+ 2× abc(x/2). So

abc(32)

= 32 + 2× abc(16)
= 32 + 2× (16 + 2× abc(8))
= 32 + 2× (16 + 2× (8 + 2× abc(4)))
= 32 + 2× (16 + 2× (8 + 2× (4 + 2× abc(2))))
= 32 + 2× (16 + 2× (8 + 2× (4 + 2× (2 + 2× abc(1)))))
= 32 + 2× (16 + 2× (8 + 2× (4 + 2× (2 + 2× 1))))
= 192

The global count variable counts the number of calls to abc. There is one call to
abc(32), two to abc(16), four to abc(8), eight to abc(4), 16 to abc(2), and 32 to
abc(1), for a grand total of 63.
Q1 [8]
Consider

void xyz(char* p) {
if(*p != �\0�) {

cout << *p ;
xyz(p+1) ;
cout << *p ; } }

Give a reasonably complete pre- and postcondition for this subroutine. Hint:
Use words, not math to state the pre- and postconditions.
Solution:
Precondition: p is a pointer to the Þrst character of a sequence of 1 or more

characters ending with a nul byte. In other words, p points to a C-style string.
Postcondition: The sequence of characters (except for the terminating nul

byte) will have been printed twice, Þrst from front to back, and then from back
to front.
Q2 [15]
Given a possibly empty, null-terminated linked list, headed by in_head, and

an integer, pivot, make a new list, headed by out_head, that contains copies
of any nodes whose value is bigger than the given integer. The copied nodes
should be in the same order as the original nodes. E.g. if the original list contains
h3, 1, 4, 2, 3, 5i and the integer is 2 then the new list will contain h3, 4, 3, 5i .
Set ok to true if you succeed and to false if you run out of memory.
Use recursion. Note that out_head is an output parameter.
Solution:

#include <new>
using namespace std;
...

2

void copy_bigger(Node* in_head, int pivot, Node* &out_head, bool &ok) {
if(in_head == 0) {

ok = true ; }
else if(in_head->data > pivot) {

out_head = new(nothrow) Node ;
if(out_head) {

out_head->data = in_head->data ;
copy_bigger(in_head->next, pivot, out_head->next, ok) ;

else {
ok = false ; } }

else {
copy_bigger(in_head->next, pivot, out_head, ok) ; }

}

3

