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1 Alphabets, Sequences and Languages

An alphabet is a finite set. We call the members of the alphabet symbols; often they are characters.

A finite sequence over an alphabet ¥ is a function from {0,1,..., N — 1} (for some integer
N > 0) to the ¥. The size of the function’s domain is the length of the sequence. We write
sequences like this: aab is a sequence mapping 0 to symbol a, 1 to a, and 2 to b. We write a
sequence of length 1 as a (whether the symbol or the sequence is meant will be clear from context)
and the sequence of length 0 as e.

A language over an alphabet is a set of finite sequences over the alphabet. For example if we
have an alphabet of two distinct symbols a and b, then each of the following is a language over
that alphabet

{} {e} {a,b,ab,ba} {a, ab, aba, abab, ababa, ...} {¢,a,aa, aaa, aaaa, ...}

The first example is the empty language, whereas the second example is a language containing
only the empty sequence; these are different. Notice that while all the sequences in a language are
finite, the language itself can be infinite (as in the last two examples).

2 Regular expressions

Listing all the elements of a language is fine for finite languages, but not good for infinite languages.
We need a notation to describe languages. Regular expressions is one such notation. Various
software tools support regular expression using various syntaxes; the syntax I use here is typical,
but not unique. There are 5 basic ways to form a regular expression.

Alphabet members:. Any member of the alphabet is a regular expression. It describes
the language that consists of one sequence which consists of that one symbol exactly once. For
example, if our alphabet contains a symbols a and b, we have

Regular Expression Language
a {a}
b {o}

Epsilon: The symbol € is a regular expression. It describes the language {e}.




Alternation: If E and F' are regular expressions then E | F' is also a regular expression; it
describes the set of all sequences described by either E or F' (or both).

Regular Expression Language

alb {a,b}
€la {€,a}
albla {a,b}

Catenation: If F and F' are regular expressions, then E F'is a regular expression; it describes
all sequences you can make by sticking together a sequence described by E (on the left) and a
sequence described by F' (on the right). Examples:

d {abd, cd}
a|b) {aaa,aab, aba,aabb,baa, bab, bba, babb}

Regular Expression Language
ab {ab}
€ea {a}
aba {aba}
(a]b) (c]|d) {ac, ad, be, bd}
a(b|e) {a,ab}
ab) | c)
(

We consider catenation to have higher precedence than alternation, so the second last example
can be written (a b | ¢) d.

As the last example hints, even for finite languages, using a regular expression can be far more
concise than listing all the elements.

Using the notations so far, we can describe any nonempty finite language, but no infinite
languages. The key to describing infinite languages is the following notation.

Repetition: If F is a regular expression, then E* is a regular expression describing sequences
that are made up of the catenation of a finite number (0 or more) of sequences, each described
by E. If we allowed infinitely large regular expressions (which we don’t!), then E* would describe

the same language as

Examples:
Regular Expression Language
a* {€,a,aa,aaa, ...}
(ab)* {€, ab, abab, ababab, ...}
(a]b)* {€,a,b,aa,ab,ba, bb, aaa, ...}
(ab]o)* {e, ¢, ab, cc, abe, cab, cce, abab, ...}

Repetition has higher precedence than either alternation or catenation, so ab* means a(b*)

That is all there is to regular expressions. However for brevity, we abbreviate certain constructs.
{E}" means at least m and at most n repetitions of E. The defaults for m and n are 0 and infinity
respectively, thus {E} is the same as E*. Note that the use of braces here is quite unrelated to

their use in delimiting sets. Examples:

Regular Expression Language
{ab}3 {abab, ababab, abababab};
{ab}y {ab, abab, ababab, ...}
{a | b}? {€,a,b,aa,ab,ba,bb}
{ab]c} {e, ¢, ab, cc, abe, cab, cce, abab, ...}



When the alphabet is totally ordered (e.g. the characters in a character set), then [a — b] is used
to describe all single symbol sequences consisting of a symbol between a and b (inclusive). For
example, if we use the characters of the ASCII character set and order them numerically, then
[a—z] means any lower case letter.

Regular expressions are often used in file editors for finding strings within files (vi and Ultraedit
are two such editors). The AWK, Perl and Javascript languages all support regular expressions for
searching strings. The Unix utilities grep, fgrep, and egrep use regular expressions for searching
files. Regular expressions have even been used to describe digital circuits. lex and flex are program
generators that can convert a set of regular expressions into a C program that digests files according
to the regular expressions; JavaCC is a similar program generator for Java. lex and flex are often
used to write lexical analyzers for compilers, but can be applied in far ranging ways.

Given a sequence and a regular expression, it is possible to decide if the sequence is described
by the regular expression in O(N) time and O(1) space, where N is the length of the sequence.

Here are some examples. A regular expression describing hexadecimal numbers in Java:

0 [X){l0o—9][[a—£][[A-F]}x (1 |L]e)
A regular expression describing DOS file names

{H}5{H}

where His ([0—9]|[a—z] |[[A—Z]|—'|Q|#|$|% | " |etc.).

3 Extended Context Free Grammars

Regular expressions are a nice formalism, but they can not describe all languages. Any language
that can be described by a regular expression is called a reqular language. To go beyond regular
expressions, we look at extended context free grammars.

Extended context free grammars are a generalization of regular expressions. Using extended
context free grammars we can describe more languages.!

An extended context free grammar consists of an alphabet, a nonempty finite set of symbols not
in the alphabet (called the set of nonterminal symbols) and a set of productions. Each production
is consists of a nonterminal symbol and a regular expression; we write it as N — FE. FEach
nonterminal symbol appears on the left-hand side of exactly one production. The alphabet of
the regular expressions is the union of the alphabet of the grammar and the set of nonterminal
symbols. One nonterminal is singled out to be the start nonterminal.

Here is an example grammar: It has an alphabet of {l/,z,r}, nonterminal symbols {S, B},
where S is the start nonterminal, and productions

S — IBr
B — IBr|z

IBut still not every language. There are more powerful description techniques that allow you to describe
languages that no context free grammar can describe.

It is a philosophical issue whether there exists a notation that can describe every language. Most people, who
have thought about it, think that there is no such language, on the basis of proofs that seem to show how to
find, for any proposed description notation, a language that it can not describe. Others counter that no one can
“properly” describe a language that can not be described in, for example, the C programming language, and that
the existence of such an indescribable things is doubtful. Luckily this question, while very interesting, does not
need to be answered for the purposes of this course.



The idea is that you start with the start nonterminal and replace it with any sequence in the
language described by its regular expression. Then you pick any occurrence of a nonterminal in the
resulting sequence, and replace it with any sequence in the language described by the nonterminal’s
regular expression. Repeat until there are no nonterminals left. Any sequence you can reach by
this process is considered in the language described by the grammar.

Let’s write s = ¢ to mean that sequence ¢ can be obtained from sequence s by picking one
occurrence of a nonterminal in s are replacing it by one sequence in the language described by
that nonterminal’s regular expression. Now using the example grammar we can see:

S Replace S with (Br
= [Br Replace B with [ Br
= [IBrr Replace B with x
= lzrr

8o llzrr is in the language described by the grammar. A little thought will show that the language
is
{lzr, Uzrr, Ulxrrr, ...}

Sufficiently more thought will convince you that this language is not regular.

Exaclty those languages that can be described by an extended context free grammar are called
context free Zanguages.2

Programming languages are usually described by a combination of regular expressions, to show
how source files are broken into tokens, and an extended context free grammar to show how tokens
are assembled into syntactically correct programs. Some aspects of programming languages are
beyond the capabilities of extended context free grammars to describe; e.g., for most programing
languages it is impossible to create an extended context free grammar that describes only programs
that do not contain type errors. Still, the extended context free grammar provides a nice framework
on which to base programs that not only decide syntactic correctness, but also matters such as
type correctness and even what machine code to generate, i.e., complete compilers. Extended
context free grammars also find application in describing complex input (and output) formats of
all kinds, for example HTML, or communications protocols, even user interfaces.

Given a sequence and an extended context free grammar, it is possible to decide if the sequence
is described by the grammar in O(N?) time and O(N?) space, where N is the length of the
sequence. This isn’t very good, so tools that are based on extended context free grammars usually
restrict the grammars they accept so as to allow strategies that result in O(N) time and O(N)
space. These restrictions restrict the set of languages the tools can handle; this is rarely a problem
in practice, since people tend to create languages that can be parsed quickly. yacc is a popular
tool for generating C programs that dissect a file according to a given (restricted) context free
grammar. JavaCC (mentioned above) is a similar tool for Java.

Here are some examples of extended context free grammars. A grammar for expressions in a

2There is a related notation that is called context free grammars. In a context free grammar, the regular
expressions used must be alternations of catenations of alphabet symbols and e. The word “extended” refers to
the use of full regular expressions. While the formalism of context free grammars is simpler than that of extended
context free grammars, the grammars themselves are a bit harder to read and write. The two notations can describe
exactly the same set of languages, that is, the context free languages.

Context free grammars are also called “Backus-Naur Form” grammars, or just “BNF grammars”. Extended
context free grammars are often called “Extended BNF grammars”, or just “EBNF grammars”.



simple programming language, with start symbol E.

E — P(BP)
P — id|num|lpar E rpar| — P
B — +|-[x]/|I<[<[=]#
We can add to the above grammar and change the start symbol to B to get a grammar for the
statements of a simple programming language
B — 57
S — id:= E|putE]| getid
| if E then B (else B | €) end | while E do B end

Now suppose we have a program

geti
if i<0 then
put -i
else
put i
end

Lexical analysis turns this into a sequence of tokens:
get id if id < num then put - id else put id end

We can see that this sequence is in the language described by the grammar as follows

B Replace B with §' S
= S5 Replace first S with get id
= getid S Replace S with if E then B else B end

= getid if FE then B else B end And so on

Compilers go through a similar process of finding a proof that an input file conforms to the
grammar of the language. The compiler uses the structure discovered in this syntactic analysis to
drive nonsyntactic checking (such as type-checking) and code generation.



