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There is a charmingly adolescent quality to the agile 
literature: I am sooooo unique! Nobody before me 
understood what life is about! My folks are sooooo, like, 20-
th century!

Bertrand Meyer, 2014

Hype is the plague on the house of software.
Robert Glass, 2003



Evidence-Based Practice

5 Steps
1. Ask answerable questions
2. Collect evidence
3. Critically appraise evidence
4. Integrate evidence into decision making
5. Reflect on results



The bad news is that, in our opinion, we will never find the 
philosopher’s stone. We will never find a process that 
allows us to design software in a perfectly rational way. The 
good news is that we can fake it.

David Parnas and Paul Clements, 1986

We propose instead that one begins with a list of difficult 
design decisions or design decisions which are likely to 
change. Each module is then designed to hide such a 
decision from the others.

David Parnas, 1972



Design Activities

Usual suspects
1. Architecture
2. High-level design
3. Low-level design
4. Detailed design
5. Prototyping
6. Development

Counter-intuitive
1. Construction
2. Coding
3. Maintenance



Malleability

Things that change
1. Business rules
2. Hardware dependencies
3. Input  and output
4. Nonstandard language features
5. Complex algorithms
6. Status variables



You wanted a banana but what you got was a gorilla 
holding the banana and the entire jungle.

Joe Armstrong, 2009
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Textbook: Agile

1. Continuous Integration
2. Test-Driven Development
3. Refactoring
4. Time Boxing
5. User Stories
6. Pair Programming
7. Embedded Customer
8. Open Workspace



Textbook: UML

Core diagrams
1. Class
2. Sequence
3. Activity
4. State Machine

Other notations
1. Data Flow Diagram
2. Tables
3. SysML
4. Ad-hoc



Textbook: Patterns

The choice of programming language is important because 
it influences one’s point of view. Our patterns assume 
Smalltalk/C++ level language features, and that choice 
determines what can and cannot be implemented easily. If 
we assumed procedural languages, we might have 
included design patterns called “Inheritance,” 
“Encapsulation,” and “Polymorphism.” Similarly, some of 
our patterns are supported directly by the less common 
object-oriented languages. CLOS has multi-methods, for 
example, which lessen the need for a pattern such as 
Visitor.


