
1

Summary of the course lectures

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 2

Components and Interfaces

  Components:
  Compile-time: Packages, Classes, Methods, …
  Run-time: Objects, Invocations,

  Interfaces:
  What the client needs to know:

  Syntactic and Semantic
  About instances of this particular class
  About all instances of this class and its descendants (LSP)

  Levels of Description
  Architectural, Package, Class, Method

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 3

UML

  Class Diagrams
  Classes and Interfaces
  Association

  Plain Aggregation Composition
  Navagbility
  Multiplicity

  Specialization and Realization
  Dependence

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 4

UML

  Sequence Diagrams
  The tree of calls.
  Just an example of behaviour

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 5

Use Cases

  Like a movie script
1.  Ilsa: … But of course that was the day the Germans

marched into Paris.
2.  Rick: Not an easy day to forget.
3.  Ilsa: No
4.  Rick: I remember every detail. The Germans wore gray,

you wore blue.

5.  Customer: Inserts her bank card belonging to our bank
6.  ATM: Swallows card and prompts for PIN
7.  Customer : Types in PIN and presses OK
8.  ATM: Shows the main menu.

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 6

Use Cases

  Describe “Happy day Scenarios”, but also
alternatives.
  3a: The customer enters a PIN and presses

cancel
  4a: The card is returned and the use case ends.

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 7

Use Cases

  Can be used
  to verify external design with customer
  as a basis for testing
  to sequence iterations
  to drive development

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 8

Classes and Responsibilities

  Each class has responsibilities that are
  Specific, Few, & Easily understood

  Kinds of responsibilities
  Information Storage, Algorithmic, Device Interface, OS

Interface, I/O formatting, Adaptation, Structural, Creators,
Arbitrary Facts.

  Information Hiding
  Classes can hide design decisions and external constraints

from the rest of the system.
  Ideally each axis of change is confined to one class

(Information Hiding Principle)
  And each class deals with one axis of change (SRP)

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 9

Model / View

  Analysing the problem of Models and Views
we found a way to protect the model from
  changes to the number of views
  changes to the class(es) of the views
  specific requirements of specific views

  And to protect the views from
  implementation details of the model such as data

storage methods
  the need to inform other views of changes to the

model

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 10

Observer Pattern

  Our solution to the Model / View problem turns out
to have a name and be more widely applicable.

  It is the observer pattern:

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 11

Design Patterns

  Design patterns are reusable solutions to
recurring problems in software design

  Many patterns are identified and discussed in
Gamma, Helm, Johnson, & Vlissides, Design
Patterns: Elements of Reusable OO
Software, AW, 1994.

  Standard Format: Intent, Also known as,
Motivation, Applicability, Structure,
Collaborations, Consequences,
Implementations, and Variations, Known
Uses

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 12

Design Patterns

  Recurring theme: Design patterns structure classes to
minimize dependence and thus allow aspects to be
reusable. E.g.

Application
Layer

Reusable
Layer

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 13

Design Patterns

  Even if you don’t plan to reuse an aspect of
the design, this “separation of concerns”
simplifies your software. (SRP, ISP)

Application
Layer

Reusable
Layer

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 14

Observer Pattern

  Separates the concern of observer
notification from the implementation of the
model and the implementation of the views.

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 15

Command Pattern

  Separates “what needs to be done” from
“when to do it”.

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 16

Composite Pattern

  Compose objects into trees structures to
represent part-whole hierarchies
  Calls are sent down the tree

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 17

Proxy Pattern

  Provides a surrogate or placeholder for another
object
  The Subject object and the Proxy object implement the

same interface.
  The Proxy may hide the true location or other aspects of

the Subject
  [Full disclosure: My notes actually describe both the Decorator pattern and the

Proxy pattern, but use only the name “Proxy pattern”. Here’s the difference:
When new functionality is added by the intermediate object, it’s the Decorator
pattern. When location or other aspects of the subject are hidden by the
intermediate object, it’s the Proxy pattern. The JSnoopy example is properly a
case of the Decorator pattern. Adding to the confusion, Java’s Proxy class is
often used to automate implementation of the Decorator pattern. See Gamma et
al. or Freeman and Freeman for more.]

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 18

State Pattern

  Represents each state in a state machine by a
class.
  Events are mapped to method calls.
  The context keeps a pointer to the current state and

delegates events to its current state

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 19

Factory Method Pattern

  Create objects via an interface
  Different implementations will produce different

products.
  Relieves the client of having to depend on the

concrete class of the product in order to create it
AbstractProduct p = new ConcreteProduct() ;

is replaced by
AbstractProduct p = creator.create() ;

  In effect the creator is a strategy for creating products.

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 20

Builder Pattern

  Reuse a parser (or other client) with multiple
representations.
  The interface between the parser and the

representation is defined.
  A generalization of the Factory Method. Whereas,

in the factory method, it only takes one call to
build the product, with the builder, multiple calls
are used in sequence to build the product.

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 21

The Builder Pattern

  The Builder object typically may be the product.

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 22

Other Patterns

  Abstract Factory
  Create families of objects via an interface

  Singleton
  Ensure a class only has one instance

  Adapter
  Change the interface without changing funtionality

  Façade
  Provide a single interface to a set of objects

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 23

Other Patterns

  Iterator
  Give sequential access to the items of a collection without

exposing its representation
  Mediator

  Use an object to mediate all interaction between two or
more other objects

  Template Method
  Vary details of algorithm by filling in abstract methods

  Strategy
  Configure objects with strategy objects that encapsulate

different policies

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 24

Single Responsibility Principle (SRP)

  “A class should only have one reason to
change”
  Consequently most changes will affect only a

small proportion of your classes

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 25

Open / Closed Principle

  “Software entities (classes, modules,
functions etc) should be open for extension
but closed for modification”
  Design software entities so that future changes on

an axis require no modification
  Consider the template method pattern and

strategy pattern

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 26

Refactoring

  Respond to change by first improving the
structure of the software so that the portion
that is not affected is isolated from change on
the axis. Then accommodate the change.

  I.e. first restructure according to the SRP, the
IHP, and the OCP.

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 27

Liskov Substitution Principle (LSP)

  If S is a subtype of T, objects of type S should
behave as objects of type T, if they are treated as
objects of type T
  Each type T has two interfaces

  Direct Interface: What the client can expect of x, if x is known
to be a direct instance of T

  Indirect Interface: What the client can expect of x, if x is known
to be a (possibly indirect) instance of T

  The LSP can be understood as saying that the code of S
should respect the indirect interface of S and all supertypes
T of S

  The direct interface should be documented, but may
(usually) be discovered from the code,

  The indirect interface must be documented.

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 28

Dependence Inversion Principle (DIP)

a.  High-level modules should not depend on
low-level modules. Both should depend on
abstractions.

b.  Abstractions should not depend on details.
Details should depend on abstractions.

  Whereas (package) dependence usually follows
the direction of the calls, the DIP suggest
otherwise

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 29

DIP

  The DIP is crucial to reusable frameworks.
  The DIP supports the OCP by making the client open to

changes of the server
  The DIP requires the LSP so that the client can depend on

properties of the server without depending on a specific
server.

Server Layer

Client Layer

Server

Client Server
Interface

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 30

DIP and Frameworks

A
pplication
S

pecific

Generic Framework

Object Structure for a Framework

A
pplication
S

pecific

Generic Framework

Class Structure for a Framework

<<calls>>

<<calls>>

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 31

Specifications

  Contracts for methods
  Contracts for objects

  Clear box. Contracts are in terms of the actual
state of the objects
  Inheritance: LSP Preconditions may be weakened.

Postconditions may be strengthened.
  Black box. Contracts are in terms of abstract

(model) states.
  Automated verification

  Modern tools can verify respect for contracts.

© T. S. Norvell Engineering 5895 Memorial University Lecture Summary Slide 32

The End

Go forth and create marvels

