
Assignment 0

Software Design Engr 5895, 2016

Due Jan 15 @ 11:30PM.

For each question you will be marked on programming style as well as cor-
rectness. To see my opinion about what constitutes good programming style
see http://www.engr.mun.ca/~theo/Courses/ds/pub/style.pdf. In short:

• All .java files must be professionally commented; in particular, each file
should contain a comment header that gives your name, student number,
and mun email address. Each subroutine and class should have a comment
at the start of it. I encourage you to use the “javadoc” conventions for
comments.

• Code and comments must be consistently indented; tab stops should be
set every 4 characters.

• Names must be chosen carefully and spelled correctly. (Use names starting
with lower case letters for variables and methods; use names starting with
upper case letters for classes and interfaces.)

• Use subroutines to avoid redundant coding.

• Keep control structures and data structures simple.

All classes must be tested by you prior to being submitted. You are welcome
to share test code with each other.
The assignment is to be done alone. Each file should contain the following

declaration in comments near the top. “This file was prepared by [your name
here]. It was completed by me alone.”. If you obtained help in doing the
assignment, do not include this declaration, but rather an explanation of the
nature of any help that you received in doing the assignment.
Q0. Expressions
You will implement implement a set of immutable classes representing ex-

pressions in x Use at least one abstract class (with at least on abstract method).
Your classes should be subtypes of the following interface expr.Expression.

interface Expression {
double value(double x) ;

1

}

Your classes should be able to represent expressions such as sin(2x+π/2). Of
course calling value on an object representing this expression with an argument
of say 0.39270 would give a value of 0.70711.
In addition to implementing the value(double) method, override the toString()

method, which is inherited from java.lang.Object, so that your Expression ob-
jects can be converted to readable strings.
You should also write a class for producing objects that represent expres-

sions. This class should be called expr.ExpressionFactory and should declare
and implement at least the following methods

public Expression add(Expression a, Expression b)
public Expression subtract(Expression a, Expression b)
public Expression multiply(Expression a, Expression b)
public Expression divide(Expression a, Expression b)
public Expression constant(double value)
public Expression x()
public Expression sin(Expression a)
public Expression cos(Expression a)
public Expression tan(Expression a)
public Expression ln(Expression a)
public Expression exp(Expression a)
public Expression parenthesized(Expression a)

So our example expression can be constructed, printed, and evaluated via
the following code

ExpressionFactory f = new ExpressionFactory() ;
Expression a = f.multiply(f.constant(2.0), f.x()) ;
Expression b = f.divide(f.constant(Math.PI), f.constant(2.0)) ;
Expression c = f.sin(f.add(a, b)) ;
double x = 0.39270 ;
System.out.println("The value of " +c+ " at " +x+ " is " +c.value(x)) ;

The library class java.lang.Math will be helpful for doing the calculation.
Test your classs with the supplied JUnit tests.
Q1. Graphing
Create a class expr.ChartData with a 0 argument constructor and following

methods

public void setExpression(Expression a)
public Expression getExpression()
public void setXRange(double xMin, double xMax)
public double getXMin()
public double getXMax()
public void setYRange(double yMin, double yMax)

2

public double getYMin()
public double getYMax()

The following class invariants should be respected

getExpression() != null
Double.NEGATIVE_INFINITY < getXMin()
getXMin() < getXMax()
getXMax() < Double.POSITIVE_INFINITY
Double.NEGATIVE_INFINITY < getYMin()
getYMin() < getYMax()
getYMax() < Double.POSITIVE_INFINITY

The way you will use to ensure these invariants are respected is by using
preconditions for the setter methods – i.e. we will shift responsibility from the
class to its clients– and by using reasonble defaults in the constructor. These
preconditions should be checked using class util.Assert, which I will supply. The
class invariants can be checked by calling a private invariant method at the end
of the constructor and of each mutator. The invariant method uses util.Assert
to check the invariant.
Once you have implemented this class you should be able to test it with the

supplied JUnit tests and run the supplied.
Bonus. You might want to extend the graphing application to support more

functions and operations. To do this, you will need to modify the parser and
you will need to use JavaCC to regenerate the Java classes that make up the
parser.
Submission: Zip (use zip format) up all files that you have modified or created

and submit via D2L dropbox.

5 4 3 2 1 1 2 3 4 5

1.0

0.5

0.5

1.0

x

y

3

