
1

Thread-Based Animation and
Concurrent Observation

© T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 2

Here we look at two problems

!  First: How can we use threads to create
animation effects?

!  Second: How can multiple threads
concurrently observe changes in the same
object?

!  Solutions to both are found in my Othello-0,
Othello-1, Othello-2, and Othello-3 projects.
"  Othello-0 explores the these problem in one

computer.
"  Othello-1 explores the second question

First Problem

!  How can we create animation effects using
threads?

© T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 3

© T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 4

Using Threads for Animation

!  Assumptions: View objects are JComponents
that know a Model object.

!  The view’s paintComponent method consults
the Model.

!  Animation accomplished by starting a thread
that repeatedly:
"  Changes the model
"  Calls repaint() on the view object.
"  sleeps for a short time (< 40ms is good)

© T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 5

Animation In Othello-0

!  The “model” (for animation purposes) is a
class called Animator.

!  The “view” is a class called BoardView.
!  I used the observer pattern so each

BoardView observes one Animator.
!  Animation is done by making a small change

to the Animator, notifying the observers, and
waiting a little while.

© T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 6

Animation In the Othello game
!  Aims

"  Minimize dependence.
"  Keep model simple.
"  Prepare for distributed (internet) version.

!  Method
"  Split the model into two parts

!  One part (GameModel) knows nothing about animation.
!  The other part (Animator) deals only with animation.

"  Observer pattern is used to reduce dependence.

© T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 7

The Othello 0 system

:BoardView

:Animator

:GameModel

Each Animator object
observes a GameModel

Each view comp-
onent observes

an Animator
object.

GUI
Thread

Model
Update
Thread

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 8

Major classes in the design
"  BoardView extends JPanel

!  Can draw a static image.
!  Handles world-to-view transformation.
!  observes an Animator object

"  Animator
!  Provides a model in which pieces may be flying or

flipping.
!  observes a GameModelInterface object
!  Animates changes in the GameModel

"  GameModel
!  represents state of the board
!  implements GameModelInterface

Classes

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 9

© T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 10

Animation In Othello game

!  Animator: a closer look
"  A copy of the model that includes information

about the state of animated objects.
"  When the Animator object is alerted of a change

in the GameModel it
!  slowly changes the Animator object’s state to match the

model state, while
!  notifying listeners (views)

"  The Animator is thus shared by the updating
thread and the GUI thread.
!  So synchronization is used to ensure safety.

Updates

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 11

Update thread

GUI thread

© T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 12

From the Animator Class

!  When notified of a piece being flipped:
private void animateFlip(int row, int col, int newColour) {
 // Enter the flipping state.
 synchronized(this) {
 state = FLIPPING_STATE ;
 this.newColour = newColour ;
 square[row][col] = EMPTY ;
 flippingRow = row ;
 flippingCol = col ;
 amountOfFlip = 0.0 ; }
 …

© T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 13

From the Animator Class (cont.)
 …
 // Flip the piece bit by bit, allowing observation between.
 int iterations = 50 ;
 double delta = 1 / (double)iterations ;
 for(int i=0 ; i<iterations ; ++i) {
 synchronized(this) {
 amountOfFlip += delta ;
 setChanged() ; }
 notifyObservers();
 try{ Thread.sleep(20) ; }
 catch(InterruptedException e) {}
 } …

© T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 14

From the Animator Class (cont.)

 …
 // Change to the quiet state
 synchronized(this) {
 state = QUIET_STATE ;
 square[row][col] = newColour ;
 setChanged() ; }
 notifyObservers(); }

© T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 15

From the BoardView class.
!  The update method (from the Observer interface) calls

repaint
/** This implements the Observer interface*/
public void update(Observable o, Object arg) {
 repaint() ; }

!  Recall that calling repaint causes a call to paint in
the near future.

!  While the call to repaint is on the animation thread,
the call to paint will be on the GUI thread.

!  Be careful: Most AWT and Swing defined methods
should only ever be called from the GUI thread.
repaint is an exception.

Second Problem

!  How can multiple observers observe the
same model concurrently?

© T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 16

© T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 17

Ultimately we want a distributed system

:BoardView

:Animator

:BoardView

:Animator

:GameModel

Client Host 0 Client Host 1

Server Host

Each Animator object
observes a GameModel

Each view comp-
onent observes

an Animator
object.

© T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 18

The Othello-1 program (nondistributed)

:BoardView

:Animator

:BoardView

:Animator

:GameModel

Update
Threads Animation

Threads Animation
Threads

GUI
Thread

© T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 19

Sequential Observers
!  The Game model is observed by 2 Animators
!  Animating a change of state takes time.
!  With the standard observer pattern, returning

from Observer.update() indicates that an
observer is finished observing.

!  So, if the first observer takes a long time, the
second is delayed.

© T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 20

Concurrent Observers
!  Instead, I did the following.

"  The GameModel is a ConcurrentlyObservable
"  Each observer (Animator) is a

ConcurrentObserver
"  notifyObservers sets a counter to the number of

observers
!  On update, each observer launches an animation thread

and returns quickly from update.
!  Each animation thread decrements a counter when it is

finished.
!  notifyObservers() waits until the counter is 0.

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 21

The classes
Each BoardView observes an Animator.

Each Animator observes a GameModel

© T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 22

Concurrent Observers

The CountMonitor
class CountMonitior implements CountMonitorInterface {

private int count ;
CountMonitor(int start) {

count = start ; }

public synchronized void decrement() {
count −= 1 ;

if(count == 0) notifyAll() ; }
synchronized void waitForZero() {

if(count > 0)

try { wait() ; } catch(InterruptedException e) { } }

}

© T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 23

Avoiding races

!  The GameModel is shared by many threads.
"  In a future distributed varesion, there could be

multiple update threads all trying to call the
GameModel’s mutators at the same time.

"  The animation threads that may need to read
(observe) the GameModel while a mutator is still
active.

"  In the distributed system, there will be more
threads, as any callbacks from “update” will be on
a new thread.

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 24

Reader/writer locks

!  Threads accessing an object are classified as
readers or writers depending on whether they
call mutators or accessors

!  Writers are either active or passive
"  Only active writers should change fields.

!  At any time:
"  At most 1 writer can execute.
"  Any number of readers execute.
"  If the writer is active, no readers may execute.

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 25

Reader/writer locks

Mutators
public void mutator(…) {
 // Wait until no writers
 // or readers are in.
 rw.writerEnters() ;
 try {
 …make changes… }
 finally {
 rw.writerExits() ; } }

Accessors
public type accessor(…) {
 // Wait until no writers
 // are in.
 rw.readerEnters() ;
 try {
 … read the state …
 return result ; }
 finally {
 rw.readerExits() ; } }

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 26

Avoiding races

!  I used a reader/writer lock to ensure that:
"  Only one thread may be executing mutators, at

any given time.
"  Normally no thread may execute any accessor

while another thread is executing a mutator.
"  But: During notifyObservers, I allow accessors to

execute.

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 27

Avoiding races

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 28

!  Mutators for observables
public void mutator() {

 try { rw.writerEnters()
 …Make changes…
 notifyObservers() ; }

 finally { rw.writerExits() ; } }

Avoiding races

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 29

proteced void notifyObservers() {
 rw.writerGoesPassive() ;

 create a counter initialized to the
 number of observers;
 for each observer
 call update, passing the counter;
 wait for the count to reach 0
 rw.writerGoesActive() }

End of thread-based
animation and concurrent
observation

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 30

