Agile Design Principles:
The Dependency Inversion
Principle

Based on Chapter 11 of Robert C. Martin,
Agile Software Development: Principles,
Patterns, and Practices, Prentice Hall,

2003.

The Age of Procedural Programming

Although OO languages have existed since
1967, they only became popular in the late

1980s.

Prior to that, the main units of structuring
were subroutines (procedures) and, in some
languages, such as Modula and Turing,
modules

(You can think of a module as a class with all
fields and methods being static. l.e. classes
without objects.)

Dependency Inversion Principle

© 2007--2009 T. S. Norvell Memorial University Slide 2

Dependence in Procedural Programming

In a procedural language, if a procedure in module
C calls a method in module S, there is a
dependence between C and S. In java terms
classC{... Sf() ...}
class S { ... public static void f(){ ... } ... }
Since callers are directly coupled to their servers,
the callers are not reusable.

People would make reusable subroutines but it was
awkward to make reusable callers.

Thus dependence naturally follows the direction of
the calls.

Dependency Inversion Principle
© 2007--2009 T. S. Norvell Memorial University Slide 3

Dependence in Procedural Programming

One exception is that some languages
allowed pointers to subroutines as
parameters. So in C, for example, we can do

the following:
double integrate(double (*f)(double),
double low, double high, int steps) {
... sum += f(x) * width ; ... }

So integrate is a reusable caller.

Dependency Inversion Principle
© 2007--2009 T. S. Norvell Memorial University Slide 4

Dependence in OO programming

In OO programming, the simplest thing to do
Is often to have dependence follow the
direction of calls:

o class S{... publicvoidf(){...}... }and
aclassC{...voidg(Ss){...s.f()...;}or
aclassC{Ss=newS();...s.f()...;}or
aclassC{Ss;C(Ss){thiss=s;}...s.f()...}or
o class C{Ss;setS(Ss){thiss=s;}...s.f()...}

Dependency Inversion Principle
© 2007--2009 T. S. Norvell Memorial University Slide 5

‘ Dependence in OO programming

Dependency Inversion Principle
© 2007--2009 T. S. Norvell Memorial University Slide 6

Dependence in OO programming

This style

2 makes it impossible to reuse the caller
iIndependently and

o discourages the designer from viewing the task of
the client without reference to the details of what
one specific server will do.

o l.e. it discourages the separation of the concrete
iInterface that one server happens to provide from
the abstract interface that the client requires.

Dependency Inversion Principle
© 2007--2009 T. S. Norvell Memorial University Slide 7

Dependence Inversion

The Dependence Inversion Principle:
a. High-level modules should not depend on low-
level modules. Both should depend on
abstractions.

. Abstractions should not depend on details.
Details should depend on abstractions.

Dependency Inversion Principle

© 2007--2009 T. S. Norvell Memorial University Slide 8

Dependence Inversion

= Our diagram looks like this

Server Client

? :

| |

| |

| |

|

| : <<calls>>
|

| I

| W/

O mmmm——— - [0 <<Interface>>

Serverinterface

Dependency Inversion Principle
© 2007--2009 T. S. Norvell Memorial University Slide 9

Example

Buttons. We need a stop button.

onClick() {
St utto
opB n execution.StODOﬁ

T }

Note that (a) StopButton is not reusable and (b)
that the designer of StopButton is thinking only in
terms of the concrete task at hand: “stop the
execution”

Dependency Inversion Principle
© 2007--2009 T. S. Norvell Memorial University Slide 10

Example

Soon we need a go buttor Pmang

as well. <<Abstract>> +onClick()
We use the template AN

method pattern.

This is a big improvement +::zﬁfk‘(')“°" +o(:gfc‘:g°"
But we are still thinking in % ¥
terms of the concrete \/

services provided by the Execution
“lower levels” ::‘:g(’

Dependency Inversion Principle
© 2007--2009 T. S. Norvell Memorial University Slide 11

Example

Remove all dependence

StoplListener Button
+onClick()
| X
Golistener ! onClick() {
| listener.onlickC()
|
}
/ |
Execution I I /
+900 I I <<Interface>>
+§top() === < - -3 ButtonListener
+onClick()

The naming, however, is too tied to the
mechanism. We still have a spiritual
dependence.

Dependency Inversion Principle
© 2007--2009 T. S. Norvell Memorial University Slide 12

Example

StoplListener

Goli

stener

V.V

Execution

+go()
+stop()

© 2007--2009 T. S. Norvell

Button

+onClick()

X

V

onClick() {
listener.onAction()

}

<<Interface>>
ActionListener

+onAction()

Memorial University

Dependency Inversion Principle

Slide 13

Packaging.

How should we package these classes?

Since we intend Button to be reusable and Button depends on
ActionListener

Note that package dependence has been inverted.

StoplListener

Button onClick() {

b - -

+onClick() | listener.onAction()
¥ }

Golistener

\
<<Interface>>

ActionListener
+onAction()

Dependency Inversion Principle
© 2007--2009 T. S. Norvell Memorial University Slide 14

Packaging

However our ActionListener transcends buttons, so
it could be separately reused.

StoplListener

Button
+onClick()

X

GolListener

V

<<Interface>>
ActionListener

+onAction()

Dependency Inversion Principle
© 2007--2009 T. S. Norvell Memorial University Slide 15

Glue layers

When we invert dependence, the question arises of
how the layers connect. E.g. where is client created.

It could be created by the server, creating new
dependence and a new kind of responsibility for the
server.

StoplListener

<qginstantiate=$ Button
el - > +onClick()

-

<4 in__st_amiate>*>) <

Golistener

<<Interface>>
ActionListener

+onAction()

: : /

Dependency Inversion Principle
© 2007--2009 T. S. Norvell Memorial University Slide 16

Glue layer

Alternatively we create a glue layer that plugs the
parts together

Glue
<<instantiate>>
---------- N
. - T - Button
<<|nstarrt|ate>> : ronCkD)
| <<instantiate>>
. . X
l [
. v
| StoplListener
|
: W
\/ ' <<Interfac e>>
Golistener |- - _,' U D ActionListener
+onAdion()

Lcpenuc cy Inversion Principle
© 2007--2009 T. S. Norvell Memorial University Slide 17

Reflection: DIP and LSP

The DIP emphasizes that there are two interfaces
that a server class implements.

a. The concrete interface that describes exactly what the
class provides

. The abstract interface that describes what the client
needs.
This is similar to the LSP which emphasizes that a
class implements

. The concrete interface that describes exactly what the
class provides

i. An abstract interface that describes what all descendant
classes (including self) are obligated to provide

Dependency Inversion Principle
© 2007--2009 T. S. Norvell Memorial University Slide 18

Reflection: DIP and LSP

'he concrete interface is of interest to the creator of
ne object, as it is creating instances known to be of
nat specific class.

"he abstract interface is of interest to the client.

'he difference is that in the LSP we are considering
one class which may be extended. Thus both
interfaces must be documented in one class.

With the DIP we are considering an <<interface>>
and its realization. The abstract interface belongs to
the <<interface>> while the concrete interface
belongs to its realization.

] —+ r—~—

Dependency Inversion Principle
© 2007--2009 T. S. Norvell Memorial University Slide 19

Reflection: DIP and LSP

It is generally a good idea to separate these
two concerns as we have done. l.e. have two
kinds of classes

o abstract classes and interfaces exist to be
extended.

o concrete classes exist to be instantiated.
o Avoid extending concrete classes.

Dependency Inversion Principle
© 2007--2009 T. S. Norvell Memorial University Slide 20

Reflection: DIP and OCP

The DIP supports the Open/Closed Principle.

Consider our button
o . onCIickO.{

example. pervas I | execut.on_smpo'j
Originally our button ¥
class is not open for
extension, as it is e:«z}ﬁaon

. . +stop
coupled to one application

After applying the DIP, the button class is open
for extension, by plugging in various action
listener objects.

Dependency Inversion Principle
© 2007--2009 T. S. Norvell Memorial University Slide 21

In Summary

The DIP makes clients reusable by
abstracting the interface the client needs
from a server from the server’s
implementation

This protects the client’s design from
depending on incidental (as opposed to
fundamental) aspects of its server

Thus the DIP is good practice even when the
client is not intended to be reused

Dependency Inversion Principle
© 2007--2009 T. S. Norvell Memorial University Slide 22

