
1

Agile Design Principles:
The Dependency Inversion
Principle

Based on Chapter 11 of Robert C. Martin,
Agile Software Development: Principles,
Patterns, and Practices, Prentice Hall,
2003.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 2

The Age of Procedural Programming

  Although OO languages have existed since
1967, they only became popular in the late
1980s.

  Prior to that, the main units of structuring
were subroutines (procedures) and, in some
languages, such as Modula and Turing,
modules

  (You can think of a module as a class with all
fields and methods being static. I.e. classes
without objects.)

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 3

Dependence in Procedural Programming

  In a procedural language, if a procedure in module
C calls a method in module S, there is a
dependence between C and S. In java terms

class C { … S.f() … }
class S { … public static void f() { … } … }

  Since callers are directly coupled to their servers,
the callers are not reusable.

  People would make reusable subroutines but it was
awkward to make reusable callers.

  Thus dependence naturally follows the direction of
the calls.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 4

Dependence in Procedural Programming

  One exception is that some languages
allowed pointers to subroutines as
parameters. So in C, for example, we can do
the following:

double integrate(double (*f)(double),
 double low, double high, int steps) {
 … sum += f(x) * width ; … }

  So integrate is a reusable caller.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 5

Dependence in OO programming

  In OO programming, the simplest thing to do
is often to have dependence follow the
direction of calls:
  class S { … public void f() { … } … } and
  class C { … void g(S s) { … s.f() … ; } or
  class C { S s = new S() ; … s.f() … ; } or
  class C { S s ; C(S s) { this.s = s ; } … s.f()… } or
  class C { S s ; setS(S s) { this.s = s ; } … s.f()… }

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 6

Dependence in OO programming

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 7

Dependence in OO programming

  This style
  makes it impossible to reuse the caller

independently and
  discourages the designer from viewing the task of

the client without reference to the details of what
one specific server will do.

  I.e. it discourages the separation of the concrete
interface that one server happens to provide from
the abstract interface that the client requires.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 8

Dependence Inversion

  The Dependence Inversion Principle:
a.  High-level modules should not depend on low-

level modules. Both should depend on
abstractions.

b.  Abstractions should not depend on details.
Details should depend on abstractions.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 9

Dependence Inversion

  Our diagram looks like this

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 10

Example

  Note that (a) StopButton is not reusable and (b)
that the designer of StopButton is thinking only in
terms of the concrete task at hand: “stop the
execution”

  Buttons. We need a stop button.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 11

Example

  Soon we need a go button
as well.

  We use the template
method pattern.

  This is a big improvement.
  But we are still thinking in

terms of the concrete
services provided by the
“lower levels”

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 12

Example

  Remove all dependence

  The naming, however, is too tied to the
mechanism. We still have a spiritual
dependence.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 13

Example

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 14

Packaging.

  How should we package these classes?
  Since we intend Button to be reusable and Button depends on

ActionListener
  Note that package dependence has been inverted.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 15

Packaging

  However our ActionListener transcends buttons, so
it could be separately reused.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 16

Glue layers

  When we invert dependence, the question arises of
how the layers connect. E.g. where is client created.

  It could be created by the server, creating new
dependence and a new kind of responsibility for the
server.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 17

Glue layer

  Alternatively we create a glue layer that plugs the
parts together

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 18

Reflection: DIP and LSP

  The DIP emphasizes that there are two interfaces
that a server class implements.

a.  The concrete interface that describes exactly what the
class provides

b.  The abstract interface that describes what the client
needs.

  This is similar to the LSP which emphasizes that a
class implements

i.  The concrete interface that describes exactly what the
class provides

ii.  An abstract interface that describes what all descendant
classes (including self) are obligated to provide

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 19

Reflection: DIP and LSP

  The concrete interface is of interest to the creator of
the object, as it is creating instances known to be of
that specific class.

  The abstract interface is of interest to the client.
  The difference is that in the LSP we are considering

one class which may be extended. Thus both
interfaces must be documented in one class.

  With the DIP we are considering an <<interface>>
and its realization. The abstract interface belongs to
the <<interface>> while the concrete interface
belongs to its realization.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 20

Reflection: DIP and LSP

  It is generally a good idea to separate these
two concerns as we have done. I.e. have two
kinds of classes
  abstract classes and interfaces exist to be

extended.
  concrete classes exist to be instantiated.
  Avoid extending concrete classes.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 21

Reflection: DIP and OCP

  The DIP supports the Open/Closed Principle.
  Consider our button
 example.
  Originally our button

class is not open for
extension, as it is
coupled to one application.

  After applying the DIP, the button class is open
for extension, by plugging in various action
listener objects.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 22

In Summary

  The DIP makes clients reusable by
abstracting the interface the client needs
from a server from the server’s
implementation

  This protects the client’s design from
depending on incidental (as opposed to
fundamental) aspects of its server

  Thus the DIP is good practice even when the
client is not intended to be reused

