
1

Agile Design Principles:
The Dependency Inversion
Principle

Based on Chapter 11 of Robert C. Martin,
Agile Software Development: Principles,
Patterns, and Practices, Prentice Hall,
2003.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 2

The Age of Procedural Programming

  Although OO languages have existed since
1967, they only became popular in the late
1980s.

  Prior to that, the main units of structuring
were subroutines (procedures) and, in some
languages, such as Modula and Turing,
modules

  (You can think of a module as a class with all
fields and methods being static. I.e. classes
without objects.)

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 3

Dependence in Procedural Programming

  In a procedural language, if a procedure in module
C calls a method in module S, there is a
dependence between C and S. In java terms

class C { … S.f() … }
class S { … public static void f() { … } … }

  Since callers are directly coupled to their servers,
the callers are not reusable.

  People would make reusable subroutines but it was
awkward to make reusable callers.

  Thus dependence naturally follows the direction of
the calls.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 4

Dependence in Procedural Programming

  One exception is that some languages
allowed pointers to subroutines as
parameters. So in C, for example, we can do
the following:

double integrate(double (*f)(double),
 double low, double high, int steps) {
 … sum += f(x) * width ; … }

  So integrate is a reusable caller.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 5

Dependence in OO programming

  In OO programming, the simplest thing to do
is often to have dependence follow the
direction of calls:
  class S { … public void f() { … } … } and
  class C { … void g(S s) { … s.f() … ; } or
  class C { S s = new S() ; … s.f() … ; } or
  class C { S s ; C(S s) { this.s = s ; } … s.f()… } or
  class C { S s ; setS(S s) { this.s = s ; } … s.f()… }

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 6

Dependence in OO programming

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 7

Dependence in OO programming

  This style
  makes it impossible to reuse the caller

independently and
  discourages the designer from viewing the task of

the client without reference to the details of what
one specific server will do.

  I.e. it discourages the separation of the concrete
interface that one server happens to provide from
the abstract interface that the client requires.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 8

Dependence Inversion

  The Dependence Inversion Principle:
a.  High-level modules should not depend on low-

level modules. Both should depend on
abstractions.

b.  Abstractions should not depend on details.
Details should depend on abstractions.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 9

Dependence Inversion

  Our diagram looks like this

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 10

Example

  Note that (a) StopButton is not reusable and (b)
that the designer of StopButton is thinking only in
terms of the concrete task at hand: “stop the
execution”

  Buttons. We need a stop button.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 11

Example

  Soon we need a go button
as well.

  We use the template
method pattern.

  This is a big improvement.
  But we are still thinking in

terms of the concrete
services provided by the
“lower levels”

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 12

Example

  Remove all dependence

  The naming, however, is too tied to the
mechanism. We still have a spiritual
dependence.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 13

Example

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 14

Packaging.

  How should we package these classes?
  Since we intend Button to be reusable and Button depends on

ActionListener
  Note that package dependence has been inverted.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 15

Packaging

  However our ActionListener transcends buttons, so
it could be separately reused.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 16

Glue layers

  When we invert dependence, the question arises of
how the layers connect. E.g. where is client created.

  It could be created by the server, creating new
dependence and a new kind of responsibility for the
server.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 17

Glue layer

  Alternatively we create a glue layer that plugs the
parts together

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 18

Reflection: DIP and LSP

  The DIP emphasizes that there are two interfaces
that a server class implements.

a.  The concrete interface that describes exactly what the
class provides

b.  The abstract interface that describes what the client
needs.

  This is similar to the LSP which emphasizes that a
class implements

i.  The concrete interface that describes exactly what the
class provides

ii.  An abstract interface that describes what all descendant
classes (including self) are obligated to provide

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 19

Reflection: DIP and LSP

  The concrete interface is of interest to the creator of
the object, as it is creating instances known to be of
that specific class.

  The abstract interface is of interest to the client.
  The difference is that in the LSP we are considering

one class which may be extended. Thus both
interfaces must be documented in one class.

  With the DIP we are considering an <<interface>>
and its realization. The abstract interface belongs to
the <<interface>> while the concrete interface
belongs to its realization.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 20

Reflection: DIP and LSP

  It is generally a good idea to separate these
two concerns as we have done. I.e. have two
kinds of classes
  abstract classes and interfaces exist to be

extended.
  concrete classes exist to be instantiated.
  Avoid extending concrete classes.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 21

Reflection: DIP and OCP

  The DIP supports the Open/Closed Principle.
  Consider our button
 example.
  Originally our button

class is not open for
extension, as it is
coupled to one application.

  After applying the DIP, the button class is open
for extension, by plugging in various action
listener objects.

© 2007--2009 T. S. Norvell Memorial University
Dependency Inversion Principle

Slide 22

In Summary

  The DIP makes clients reusable by
abstracting the interface the client needs
from a server from the server’s
implementation

  This protects the client’s design from
depending on incidental (as opposed to
fundamental) aspects of its server

  Thus the DIP is good practice even when the
client is not intended to be reused

