
1

Remote Method Invocation
(RMI) and Distributed

Observers in Java
Theodore Norvell

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 2

The Proxy Pattern

!  The Client object uses its subject via an interface
!  Thus it may be used with a real subject or with a

proxy object which represents the subject.

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 3

The Proxy Pattern

!  The client
calls the
proxy,
which

!  forwards
the call
(somehow)
to the
actual
subject.

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 4

RMI and the Proxy pattern

!  RMI uses the Proxy pattern to distribute
objects across a network.

!  Recall that in the Proxy pattern a proxy and a
subject share a common interface.

!  In RMI, objects call methods in a proxy (aka
stub) on its own machine
"  The proxy sends messages across the network to

a “skeleton” object
"  The skeleton calls the subject object.

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 5

One Remote Method Call.

(0) Client calls stub
(1) Stub messages

skeleton
(2) Skeleton calls

server (subject)
(3) Call returns
(4) Skeleton

messages
proxy

(5) Call returns

Full disclosure

!  Java no longer uses skeleton objects that are
paired one-to-one with the server objects.

!  I’ll include them in the pictures to represent
whatever set of objects is listening for net
traffic and capable of sending messages to
the true server object.

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 6

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 7

Issues
!  Concurrency

"  If there are multiple clients, the server may field multiple
calls at the same time.
!  So use synchronization as appropriate.

!  Argument passing
"  Arguments are passed by value or “by proxy” not by

reference.
!  Proxy generation

"  Proxy classes are automatically derived from the server
class’s interface.

!  Lookup
"  Objects are usually found via a registry (program

rmiregistry)

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 8

Nitty-Gritty
!  The proxy and the server share an interface.

"  This interface must extend java.rmi.Remote.
"  Every method in the interface should be declared to throw

java.rmi.RemoteException
"  RemoteExceptions are thrown when network problems are

encountered,
"  or when server objects no longer exist.

!  The server typically extends class
java.rmi.server.UnicastRemoteObject
"  The constructor of this class throws a RemoteException
"  Therefore, so should the constructor of any specialization.

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 9

Argument Passing Revisited
!  Most arguments and results

"  are converted to a sequence of bytes sent over the net
"  therefore the class should implement the

java.io.Serializable interface
"  a clone of the argument/result is built on the other side.
"  Pass by object value, rather than by object reference.

!  But
"  objects that extend java.rmi.server.UnicastRemoteObject
"  instead have a proxy constructed for them on the other side
"  I call this “pass by proxy”. Essentially pass/return by

reference
!  So each argument, result, exception type should be

"  a primitive type, implement Serializable, or extend
UnicastRemoteObject

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 10

An Example – Distributed Othello

!  Othello is a two person board game
!  My implementation uses the observer pattern

so that,
"  when the (game state) model changes,
"  all observers are informed of the change.

!  I wanted to put the model on one machine
and the observers on other machines.

!  Hence I implemented the observer pattern
with RMI.

!  This is example othello-2 on the website.

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 11

The Observer Pattern

Subject alerts Observers of changes of state.

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 12

Observer Pattern

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 13

Object diagram for Othello 2

:BoardView

:Animator

: BoardView

:Animator

:RemoteGameModel

Client Host 0 Client Host 1

Server Host

Observes Observes

Observes Observes

Notifies Notifies

Notifies Notifies

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 14

… with proxies and skeletons
: BoardView

:Animator

:RemoteGameModel

Observes

Skeleton

Animator Proxy

Skeleton

Remote Game Model’s Proxy

Observes

Communicates
with

Communicates with

Notifies

Server
Host

Notifies

Animator Proxy

: BoardView

:Animator

Observes Skeleton

Remote Game Model’s Proxy

Observes

Communicates
with

Communicates
with

Notifies

Notifies

Notifies

Client
Host

Another Client Host

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 15

The Observer Pattern for Othello

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 16

Proxy for the Remote Game Model

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 17

Proxies for the Animators

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 18

Animator / RemoteGameModel Relationship

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 19

Typical sequence —slightly simplified

!  A remote client calls a mutator on the
RemoteGameModel via its stub & skeleton
"  The RemoteGameModel updates its state and notifies each

Animator via its stubs & skeletons.
!  The Observers (Animator objects) call the

RemoteGameModel accessor “getPieceAt” via its stubs and
skeleton.

!  getPieceAt returns
"  The update routines return.

!  The original mutator call returns and the
RemoteGameModel becomes unlocked.

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 20

Typical sequence —slightly simplified
someObj : RemoteGameModel : RemoteGameModel_Stub : Animator_Stub : Animator

move(int, int, int)
notifyObservers(...)

update(...)
update(...)

Across net
with help of
skeleton

getPieceAt(int, int)
getPieceAt(int, int)

Across net with
help of skeleton

Calls to other
accessors are
similar

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 21

Concurrent Notification
!  The previous sequence is slightly simplified.

"  In fact the Animators start fresh animation threads
and return from update almost immediately (so
that all can be informed essentially at the same
time).
!  The Animation threads will inform the

RemoteGameModel of when they have completed their
animation.

"  The RemoteGameModel waits until it has been
informed that all animations are complete.

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 22

Concurrent Notification

I simplifed
this diagram
a bit by
omitting the
callbacks
from the
animators to
the game
model and
by omitting
the stubs
and
skeletons.

During this time
the animators
animate (using
new threads
created in
update). The last
thing these
threads do is call
decrement (via
RMI). Once all
the animation
threads have
called
decrement, the
original server
thread returns
from waitForZero

someObj : RemoteGameModel : RemoteCountMonitor : Animator : Animator
move(...)

notifyObservers(...)
update(...)

update(...)

waitForZero()

decrement()

decrement()

A concurrency problem

!  Since the RemoteGameModel is accessed by multiple
threads, I originally made all public methods
synchronized.
"  This was a mistake. Look at the sequence diagram a few slides

back. Note that the white thread executes “move”, but the brown
thread executes the callback to “getPiece”. This caused a
deadlock!

!  The solution was to use a reader/writer lock
"  This ensured that only one mutator at a time could be executed.

But it allows accessors to be executed during the observation
phase.

"  See my notes on Animation with Threads and the code for
RemoteGameModel in othello-2 for details.

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 23

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 24

Naming the Server
!  The clients must be able to find the server

(RemoteGameModel object)
!  A Registry is an object that listens on a known port

and that associates proxies (stubs) with names.
!  The server registers the RemoteGameModel under

an known name.
!  The client uses a URI of the form

rmi://host:port/name
!  To ask the registry at host:port for a copy of the stub.

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 25

Binding the server to a name.

!  The main routine for the server
"  The static method rebind in Naming gives a URI to

gameModel
public static void main(String[] args) {
 String name = “gameModel” ;
 int port = 1491 ;
 try {
 // Make the model
 RemoteGameModel gm = new RemoteGameModel();
 // Create a registry
 Registry registry = LocateRegistry.createRegistry(port);
 // Create a proxy and bind it to the name.
 registry.rebind(name, gm); }
 catch(Throwable e) { … } }

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 26

Binding the observable

gm

RemoteGameModel object

Proxy objects

Skeleton object

JVMs

Registry object

1 new RemoteGameModel()

registry

2 LocateRegistry.makeRegistry(1491)

3 registry.rebind(“gameModel”, gm)

1491 ports

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 27

Looking up the server object

!  The clients obtain a proxy for the game model using
Naming.lookup(URI)

!  From ClientMain.java
public static void main(String[] args) {
 RemoteGameModelInterface proxy = null ;
 String host = … ; // host for server
 try {
 String name = “rmi://” +host+ “:1491/gameModel” ;
 proxy = (RemoteGameModelInterface)
 Naming.lookup(name) ; }
 catch(Throwable e) { … }
… continued on the slide after next …

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 28

Looking up the server object

GameModel object
Proxy objects

Skeleton object

JVMs

Animator object

2. Naming.lookup(uri) is called on the
client vm.

2.1 A lookup message is sent
to the RMI registry.

2.1.1. A serialized copy
of the proxy is returned
to the client. And a proxy
is built in the client vm.

1491

registry

ports

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 29

Closing the loop
!  The client can then use the proxy. E.g.

"  Continuing the ClientMain main routine
…
Animator animator = null ;
try {
 animator = new Animator(proxy) ; }
catch(RemoteException e) { … }

"  The constructor for Animator
class Animator extends UnicastRemoteServer {
 public Animator(RemoteGameModelInterface gameModel)
 throws RemoteException {
 this.gameModel = gameModel ;

gameModel.addObserver(this); }

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 30

Adding a remote Observer.

!  The Animator calls addObserver(this) on the
RemoteGameModel’s proxy.
"  Since Animator extends UnicastRemoteServer, it

is passed by proxy, meaning
"  a proxy for the Animator is constructed in the JVM

of the RemoteGameModel.
"  (see next slide.)

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 31

Creating an observer (animator)

GameModel object
Proxy objects

Skeleton object

JVMs

Animator object

3. Animator is constructed

3.1 addObserver(this) sent to proxy

3.1.1 animator proxy is build

3.1.2 animator proxy sent to
gameModel

3.1.3 gameModel adds animators
proxy to its observers list

ports

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 32

The final hookup (again)

:Animator

:RemoteGameModel

Client Host 0

Observes

Skeleton Animator Proxy

Skeleton

Remote Game Model’s Proxy

Communicates with

Communicates with

Notifies

Server
Host

Calls

Calls

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 33

Deployment
!  Both the server and the client JVMs need to

have access to the same .class files.
!  An easy way to do this is to put all class files

in one jar file that is on both machines.
!  The server is started with

java -cp othello-2.jar othello.ServerMain

!  The client is started with
java -cp othello-2.jar othello.ClientMain

!  Source for a complete working game is on
the course website as othello-3.

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 34

A Few Words of Warning

!  RMI makes it seductively easy to treat remote
objects as if they were local.

!  Keep in mind
"  Partial Failure

!  Part of the system of objects may fail
!  Partial failures may be intermittent
!  Network delays
!  On a large network, delays are indistinguishable from

failures
"  In the Othello example, failure was not considered. The

system is not designed to be resilient to partial failures.

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 35

A Few Words of Warning (cont.)
!  Keep in mind (cont.)

"  Performance
!  Remote calls are several orders of magnitude more

expensive than local calls (100,000 or more to 1)
"  E.g. in the Othello example, this motivated splitting the

model into local (Animator) and remote
(RemoteGameModel) copies.

"  Concurrency
!  Remote calls introduce threads that may not be in a

nondistributed system.
"  E.g. in the remote observer pattern, callbacks from the

observer to the observable will be on a thread different from the
one that calls “update”.

© 2004-10 T. S. Norvell Engineering 5895 Memorial University RMI. Slide 36

A Few Words of Warning (cont.)

!  Keep in mind (cont.)
"  Semantics changes

!  In Java, local calls pass objects by pointer value.
!  Remote calls pass objects either by copy or by copying

a proxy.
"  E.g. in the Othello game as I converted from the

nondistributed to a distributed version, the semantics of
some calls changed, even though I did not change the
source code for those calls.

