
1

Models and Views

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 6. Slide 2

Responsibilities for a typical GUI
application
  Represent some data
  Receive input from the user
  Make changes to the data in response to

input
  Present aspects of the data to the user

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 6. Slide 3

An example: An appointment calendar
application
  Represent a set of appointments
  Receive commands to enter new

appointments, delete appointments, change
appointments

  Make changes to the set of appointments
  Present all appointments for a given day or

week to the user.

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 6. Slide 4

Split the responsibilities

  Model
  Store the data
  Change the data

  View (a.k.a. Presenter)
  Receive commands from the

user (mouse clicks & key
presses)

  Present the data visually.
(Translate to pixels)

User

View

Model

Input events Pixel
colours

Change
commands Selected

data

Information flow

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 6. Slide 5

Protection against change

  The model component is protected against
changes in the GUI technology

  E.g. the same model component can be used
for a desktop application and for a PDA
version

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 6. Slide 6

Should we further split the View?

  Right now we are only looking at a top-level
split.

  Furthermore in GUI applications, input and
output are closely bound since the meaning
of mouse clicks and key presses depends on
where on the screen they are located and
control of the screen is an output
responsibility.

  The answer is: yes, but not yet.

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 6. Slide 7

Should we further split the model?

  Again the answer is: yes, but not yet.
  In many applications the storage function can be

represented by classes that simply provide a conduit
to a relational database

  The responsibility of sensibly changing the data is
called the “business logic”

  Maintaining invariants on the data is the
responsibility of the “business logic”.

  For example, the storage part may store dates as
year, month, and day. The business logic must
ensure that the day is not too big for the month.

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 6. Slide 8

Dependence

  Since we want the model to be reusable it
stands to reason that the model should not
depend on the view.

  On the other hand, there seems to be no big
problem with the view depending on the
model.

  Never-the-less there is little harm in
designing so that the view does not depend
on the model class, but only an interface.

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 6. Slide 9

Push vs. Pull

  When information flows in the same direction as the
method calls, we call it a “push”.

  When it flows opposite to the direction of the method
calls, we call it “pull”.

  Since changes originate with the user and
propagate to the view, it makes sense for the view to
push changes to the model

  Since the model does not know what information the
view needs, it makes sense for the view to pull the
data it needs to display

  Luckily this means the method calls all go the same
way.

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 6. Slide 10

This leads us to the following design

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 6. Slide 11

But Wait
  The view must be written to obtain all the data it needs

after every change.
  This makes it hard to split the view into loosely

connected (or unconnected parts)
  For example we might have a one-week view and a

one-day view.
  We might have a “view” that ensures the desktop

application is synchronized to the PDA application.
  There is little reason for these different views to know

each other, but currently they must so that they all
“refresh” themselves when any one makes a change.

  Furthermore the model might change in response to a
message that does not come from any view, as when
an appointment becomes “due”

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 6. Slide 12

Solution 0
  The model knows all the views.
  The model pushes changed information to the views

Problems:
  What if the set of views changes?
  What if the information needed by a view changes
  Either way, the model must be recoded.
  Poor design!

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 6. Slide 13

Solution 1
  The model knows the views
  But the views pull the information they need
  The model alerts the views that there was a change to the

state.

Problems:
  What if the set of views changes?
  Either way, the model must be recoded.

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 6. Slide 14

Solution 1 & 2 call flow

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 6. Slide 15

Solution 2
Keep a list of observers, each implementing an

interface

© 2003 T. S. Norvell Memorial University Slide set 6. Slide 16

Observer Pattern

  As we will see later, this pattern of object
relationships and interactions is called the
“Observer Pattern”

