
1

Design Patterns

Elements of Reusable OO Software
Design

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 2

Design patterns are

  Design problems are rarely unique.
  Chances are that someone else has

encountered a similar problem and come up
with a good solution in the past.

  “Design Patterns” are reusable solutions to
recurring problems

  Gang of 4 (GoF) book: Gamma, Helm,
Johnson, & Vlissides, Design Patterns:
Elements of Reusable OO Software, AW,
1994.

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 3

Pattern descriptions in GoF

Name, Also Known As. Crucial for building a common
vocabulary among software designers.

Intent giving a short description
Motivation, giving example.
Applicability, explaining when to use the pattern.
Structure and Participants: How the classes relate.
Collaboration: How the objects use each other.
Consequences. The costs and benefits of the proposed

solution.
Implementation, Sample Code: Details and variations of

implementation.
Known Uses. Examples from specific products.

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 4

Bridge Pattern

  (If GoF had been written for Civil Engineers.)
  Name: Bridge
  Intent: Allow a road to cross a body of water or other

obstacle
  Motivation: It is hard to build a road on water,

dangerous to build a road across a highway or
railroad track, …

  Applicability: When an obstacle is not too wide or
too high and going under or around are not options.

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 5

Bridge Pattern (cont)

  Structure:

[And so on.]

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 6

Kinds of patterns

  The gang of 4 book (GoF) divides patterns
into 3 broad classes:
  Creational Patterns. Deal with problems involving

object creation.
  Structural Patterns. Deal with problems involving

composition and aggregation.
  Behavioural Patterns. Deal with problems

involving object behaviour.

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 7

Name: Observer (GoF, Behavioural)

  “Intent: Define a 1-to-many dependency between
objects so that when one object changes state, all
its dependents are notified and updated
automatically.” [Gamma et al 1994]

  Also known as “Listener”, “Publish-Subscribe”.
  Motivation: Need to maintain consistency between

related objects without creating unwanted
dependencies between classes.
  Example: In GUI architecture views must be kept consistent

with model, but:
  We don’t want the model classes to depend on the view

classes so that model classes can be reused with other views.

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 8

Observer (GoF, Behavioural) cont.

  Applicability:
Use the Observer pattern:
  “When an abstraction has two aspects, one

dependant on the other. Encapsulating these
aspects in separate objects lets you vary and
reuse them independently.” [Gamma et al 1994]

  “When a change to one object requires changing
others and you don’t know how many objects
need to be changed.” [Gamma et al 1994]

  “When an object should be able to notify other
objects without making assumptions about who
[sic] these objects are.” [Gamma et al 1994]

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 9

Observer: Structure (from GoF)

  Structure

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 10

Observer: Behaviour

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 11

Observer: Behaviour
  Collabor-

ations
  Where an

observer
calls
setState.

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 12

Consequences (+)

  ConcreteSubject may be reused without
reusing observers

  Observer classes may be added or removed
without modifying ConcreteSubject or other
observer classes.

  Observers may belong to higher level in a
layered system.

  Supports broadcast to many observers

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 13

Consequences (-)

  Cost of update is hidden from subject.
  No indication of how subject has changed, may lead

to costly unneeded updates. (Not usually a problem
in GUIs.)

  Subject must be consistent when it calls
notifyObservers.

  Observer must be consistent if it calls setState.
  Too many notifications. Every change causes

notifications. This may be too many.

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 14

Implementations and variations.
  Abstract subject may be replaced by a delegate

(delegation rather than inheritance)

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 15

Implementations and variations.

  Deleting subject creates dangling references.
Observers should be informed of detachment
and then detached.

  Multiple subjects for single observer.
  Third party may notify the observers rather

than subject. This can avoid problem of too
many notifications. (See Teaching Machine
example later in these notes.)

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 16

Implementations and variations.

  What changed: Subject can inform observer of how
it changed. This is the “push model”. Parameterless
update() is “pull model”.
  Push implies observer has some knowledge of what

information observers require.
  We can combine push and pull. The subject pushes a

“change event” that gives the Observer enough information
to know if the change is interesting to it. Then the Observer
pulls the details.

  Observer might know only an abstract subject (or a
subject interface). This makes observers reusable
with other concrete subjects.

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 17

Known Uses

  “observer” package. Multiple views of lists
being sorted are presented.

  “Turtle talk”.
  The Maze is the subject. MazePanel is the

concrete observer.
  Delegation, rather than inheritance, is used to

decouple observer list management from model
representation. The delegate is of class
javax.swing.event.SwingPropertyChangeSupport

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 18

Known Uses (cont.)

  The Teaching Machine:
  The Subject represents machine state.
  Observers display the state to the user.
  An Executive mediates all user interaction and

knows an object that knows the Observers.
  The Observers are only updated at the end of a

user interaction.
  Why: In response to each user action, there are

potentially 1000s of small changes to the state.
Updating the displays on every change would be
costly and have no benefit.

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 19

Known uses (cont.)

