
1

Design Patterns

Elements of Reusable OO Software
Design

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 2

Design patterns are

  Design problems are rarely unique.
  Chances are that someone else has

encountered a similar problem and come up
with a good solution in the past.

  “Design Patterns” are reusable solutions to
recurring problems

  Gang of 4 (GoF) book: Gamma, Helm,
Johnson, & Vlissides, Design Patterns:
Elements of Reusable OO Software, AW,
1994.

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 3

Pattern descriptions in GoF

Name, Also Known As. Crucial for building a common
vocabulary among software designers.

Intent giving a short description
Motivation, giving example.
Applicability, explaining when to use the pattern.
Structure and Participants: How the classes relate.
Collaboration: How the objects use each other.
Consequences. The costs and benefits of the proposed

solution.
Implementation, Sample Code: Details and variations of

implementation.
Known Uses. Examples from specific products.

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 4

Bridge Pattern

  (If GoF had been written for Civil Engineers.)
  Name: Bridge
  Intent: Allow a road to cross a body of water or other

obstacle
  Motivation: It is hard to build a road on water,

dangerous to build a road across a highway or
railroad track, …

  Applicability: When an obstacle is not too wide or
too high and going under or around are not options.

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 5

Bridge Pattern (cont)

  Structure:

[And so on.]

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 6

Kinds of patterns

  The gang of 4 book (GoF) divides patterns
into 3 broad classes:
  Creational Patterns. Deal with problems involving

object creation.
  Structural Patterns. Deal with problems involving

composition and aggregation.
  Behavioural Patterns. Deal with problems

involving object behaviour.

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 7

Name: Observer (GoF, Behavioural)

  “Intent: Define a 1-to-many dependency between
objects so that when one object changes state, all
its dependents are notified and updated
automatically.” [Gamma et al 1994]

  Also known as “Listener”, “Publish-Subscribe”.
  Motivation: Need to maintain consistency between

related objects without creating unwanted
dependencies between classes.
  Example: In GUI architecture views must be kept consistent

with model, but:
  We don’t want the model classes to depend on the view

classes so that model classes can be reused with other views.

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 8

Observer (GoF, Behavioural) cont.

  Applicability:
Use the Observer pattern:
  “When an abstraction has two aspects, one

dependant on the other. Encapsulating these
aspects in separate objects lets you vary and
reuse them independently.” [Gamma et al 1994]

  “When a change to one object requires changing
others and you don’t know how many objects
need to be changed.” [Gamma et al 1994]

  “When an object should be able to notify other
objects without making assumptions about who
[sic] these objects are.” [Gamma et al 1994]

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 9

Observer: Structure (from GoF)

  Structure

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 10

Observer: Behaviour

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 11

Observer: Behaviour
  Collabor-

ations
  Where an

observer
calls
setState.

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 12

Consequences (+)

  ConcreteSubject may be reused without
reusing observers

  Observer classes may be added or removed
without modifying ConcreteSubject or other
observer classes.

  Observers may belong to higher level in a
layered system.

  Supports broadcast to many observers

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 13

Consequences (-)

  Cost of update is hidden from subject.
  No indication of how subject has changed, may lead

to costly unneeded updates. (Not usually a problem
in GUIs.)

  Subject must be consistent when it calls
notifyObservers.

  Observer must be consistent if it calls setState.
  Too many notifications. Every change causes

notifications. This may be too many.

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 14

Implementations and variations.
  Abstract subject may be replaced by a delegate

(delegation rather than inheritance)

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 15

Implementations and variations.

  Deleting subject creates dangling references.
Observers should be informed of detachment
and then detached.

  Multiple subjects for single observer.
  Third party may notify the observers rather

than subject. This can avoid problem of too
many notifications. (See Teaching Machine
example later in these notes.)

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 16

Implementations and variations.

  What changed: Subject can inform observer of how
it changed. This is the “push model”. Parameterless
update() is “pull model”.
  Push implies observer has some knowledge of what

information observers require.
  We can combine push and pull. The subject pushes a

“change event” that gives the Observer enough information
to know if the change is interesting to it. Then the Observer
pulls the details.

  Observer might know only an abstract subject (or a
subject interface). This makes observers reusable
with other concrete subjects.

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 17

Known Uses

  “observer” package. Multiple views of lists
being sorted are presented.

  “Turtle talk”.
  The Maze is the subject. MazePanel is the

concrete observer.
  Delegation, rather than inheritance, is used to

decouple observer list management from model
representation. The delegate is of class
javax.swing.event.SwingPropertyChangeSupport

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 18

Known Uses (cont.)

  The Teaching Machine:
  The Subject represents machine state.
  Observers display the state to the user.
  An Executive mediates all user interaction and

knows an object that knows the Observers.
  The Observers are only updated at the end of a

user interaction.
  Why: In response to each user action, there are

potentially 1000s of small changes to the state.
Updating the displays on every change would be
costly and have no benefit.

© 2009 T. S. Norvell Engineering 5895 Memorial University Slide set 7. Slide 19

Known uses (cont.)

