
1

The Command Pattern and
the Strategy Pattern

Based on Gamma et al.

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 2

Command Pattern

  Idea: Represent actions (commands) with objects.
  “Command” objects are registered with “Invoker”

objects
  Command objects know what to do
  Invoker objects know when to do commands
  Neither class depends on the other
  Main consequences:

  The coding of an action is decoupled from its sequencing.
  The Invoker class is reusable (often part of a framework).

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 3

Example (Commands in java.awt)

  Commands implement interface
java.awt.event.ActionListener

  A command (inner) class
class LoadAction
 implements java.awt.event.ActionListener() {
 public void actionPerformed(ActionEvent e) {
 loadFile(e);
 } }

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 4

Example (Commands in java.awt)

  Command objects are passed to invokers
such as buttons and menu items
ActionListener loadAction = new LoadAction() ;
loadMenuItem.addActionListener(loadAction) ;
loadToolBarButton.addActionListener(loadAction) ;

  Invokers call their action listeners.

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 5

Example (Commands in java.awt)

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 6

Example (Commands in java.awt)

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 7

Pattern Structure

After Gamma et al

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 8

Pattern Collaboration

After Gamma et al

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 9

Consequences

  Invocation is decoupled from action
  (When is decoupled from what)
  Actions are data. They can be stored, moved,

extended.
  Multiple invoker classes can be mixed and

matched with multiple command classes.
  Commands can be aggregated to form

composite commands. (E.g. to form macros.)
See the Composite and Interpreter patterns.

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 10

Undoable Commands

  Objects associated with buttons etc create
Change objects and send them to a
ChangeManager.

  Each Change object supports doChange,
undoChange, and redoChange.

  The ChangeManager sends “doChange” to
the Change and adds it to an undoStack.

  The ChangeManager supports undoChange
and redoChange.

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 11

Undoable Commands (cont.)

Compound changes

  A problem with this scheme is that it forces
the Changes to match UI cycles (one change
per user interaction).

  Suppose we allow multiple Changes to be
applied per UI cycle.

  At the end of each cycle the UI calls
“checkpoint”

  Between checkpoints, compound changes
are built.

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 12

Compound changes (cont.)

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 13

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 14

Example: Compilation in Turtle-Talk

  The turtle-talk compiler is intended to be
reusable with different sets of “built-in”
entities: subroutines, types, and constants.
  For example, in the “Maze game”

  built-in types include “bool” and “direction”.
  built-in constants include “true”, “false”, “up”, “right”,

“down”, and “left”.
  built-in subroutines include

  wall(d : direction) : bool
  go(d : direction)
  and many others

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 15

Compilation Example (cont.)

  The compiler does not depend on knowledge
of these built-in entities. It is thus reusable.

  Each entity is represented by an entry in a
table (the symbol table) that maps its name to
a SymbolTableEntry.

  For constants, functions, and procedures,
each SymbolTableEntry has a
CodeGenerationRule object

  The CodeGenerationRule objects are
command objects.

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 16

Compilation Example (cont.)

  Each CodeGenerationRule has a method
public void apply(int numberOfArgs,
 Analyser analyser,
 CodeEmitter codeEmitter)
 throws TurtleTalkException ;
responsible for:
  checking correct usage (right number and types of

parameters) – via analyser
  indicating return type – via analyser
  generating code -- via codeEmitter

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 17

Compilation Example (cont.)

Example: the “up” constant of type “direction”.
CodeGenerationRule upCGR = new CodeGenerationRule() {
 public void apply(int numArgs,
 Analyser analyser,
 CodeEmitter codeEmitter)
 throws TurtleTalkException
 {
 analyser.check(numArgs==0, "args after constant");
 codeEmitter.emitPush(Maze.UP);
 analyser.push(DIR_TYPE); } } ;

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 18

Compilation Example (final)

  When the compiler (invoker) encounters a
function call or a procedure call, it
  looks up the subroutine in the symbol table
  emits code for the arguments
  calls the apply method of the associated
CodeGenerationRule.

  References to constants are similar.
  (The Teaching Machine also uses CGRs

extensively)

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 19

Strategy Pattern

  Idea: Represent strategies (policies) with
objects.

  Specialize general purpose classes by
supplying them with strategy objects.

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 20

Example from the AWT

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 21

Example from the AWT

  Container classes may delegate to their
layout manager to arrange their components.

  Clients can set the layout managers allowing
mix-and-match combinations.

  Each new layout manager class can be used
with any container class.

  Each new container class can be used with
any layout manager class. (In theory at least.)

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 22

Strategy Structure

After Gamma et al

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 23

Strategy Collaboration

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 24

Consequences of the Strategy pattern

  Main consequences:
  Aspects of a class’s behaviour can be modified by the

choice of a strategy object.
  The client can choose how to combine strategy with

context.
  Objects can appear to change class at runtime
  Strategies may be stored and looked up.
  Alternative to conditional statements.
  Orthogonal class hierarchies.

  Strategies can form a class hierarchy orthogonal to the
hierarchy of clients

  Alternative to (multiple) inheritance.

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 25

Aside: Use inheritance rather than
conditionals
  A hypothetical design

class Container { …
public void doLayout() {

switch(this.layoutKind) {
case BorderLayoutKind : … break ;
case FlowLayoutKind : … break ;
case GridbagLayoutKind: … break ; } … }

  Clearly this is not extensible.
  Any time you use conditional commands, ask

your self if there is an OO alternative.

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 26

Aside: Delegation vs inheritance

  Delegation is often preferable to inheritance,
as the delegate can be chosen by the
instantiator and even vary across time.

  In a single inheritance language, delegation
provides an alternative to multiple inheritance

  Consider a design with inheritance
hierarchies of n concrete contexts and m
concrete strategies. There are m*n
combinations possible for the price designing
m+n concrete classes.

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 27

Example from the Teaching Machine

  Expressions are represented by nodes that
form a tree. E.g. “x = (y+z) / 2’’ is represented
by objects : OpAssign

: ExpId : OpFloat

: OpParentheses

: ConstInt
: ExpId : ExpId

: OpFloat
: ExpFetch : ExpFetch

: OpArithmeticConversion

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 28

Example from the Teaching Machine
  Expressions are evaluated by alternately:

  “Selecting” a ready node
  “Stepping” the selected node

: OpAssign

: ExpId : OpFloat

: OpParentheses

: ConstInt
: ExpId : ExpId

: OpFloat
: ExpFetch : ExpFetch

: OpArithmeticConversion

x

y
13.0

z

42.0

55.0

55.0

2

2.0

27.5 27.5

x = (y + z) / 2

x = (y + z) / 2

x = (y + z) / 2

x = (13.0 + z) / 2

x = (13.0 + z) / 2

x = (13.0 + 42.0) / 2

x = (55.0) / 2

x = (55.0) / 2

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 29

Example from the Teaching Machine

  Expression nodes vary along multiple axes
  Number of children
  Order of evaluation of children & self (selection)
  Execution algorithm (stepping)
  Conversion of self to string for display

  The first version of the TM tried to use inheritance to
accommodate these multiple axes of variation.

  The result was a deep and complex inheritance
hierarchy that still did not eliminate duplication

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 30

Example from the Teaching Machine

  The TM was redesigned so
  Each subclass of node knows two strategy

objects.
  One strategy determines the order of evaluation of

children & self. (Selection)
  One strategy determines the execution algorithm

(Stepping)
  Both are set in the constructor

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 31

Example from the Teaching Machine

  Consider execution (stepping).
  The step method for nodes delegates to a

Stepper object:
public void step(VMState vms) {
 Assert.check(stepper != null) ;
 stepper.step(this, vms) ;
 }

  The stepper for ConstInt:
public void step(ExpressionNode nd, VMState vms) {

create an object representing the integer
associate the node, nd, with this new object }

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 32

Example from the Teaching Machine

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 33

Example from the Teaching Machine ---
Caveat
  The setting of strategies is done in the contexts’

constructors, not by the client
  Thus this use of the strategy pattern in the TM is

strictly internal to the node package. I.e. the strategy
pattern is used only as an implementation
technique.

  By contrast the strategy pattern usually provides the
client with a selection of contexts and strategies and
the ability to extend either.

  The TM approach means the client is provided with
many context classes, but no strategy classes.

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 34

Retrospect on Strategy in the TM

  In retrospect, the use of strategies for selection was
highly successful. A small number of strategies are
reused in various contexts

  The use of Stepper strategies was less successful.
Stepper subclasses and ExpressionNode
subclasses were in almost a one-one and onto
correspondence, so the benefit was negligible.

  However as the extra complication was internal to
the node package, the cost was contained. I.e. no
cost was paid by client code.

  Furthermore we did make use of stored Steppers to
implement built-in function calls --- an unexpected
benefit.

