The Command Pattern and
the Strategy Pattern

Based on Gamma et al.

Command Pattern

Idea: Represent actions (commands) with objects.

“Command” objects are registered with “Invoker”
objects

Command objects know what to do
Invoker objects know when to do commands
Neither class depends on the other

Main consequences:

o The coding of an action is decoupled from its sequencing.
o The Invoker class is reusable (often part of a framework).

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 2

Example (Commands in java.awt)

Commands implement interface
Jjava.awt.event.ActionLlistener

A command (inner) class

class LoadAction
implements java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {

loadFile(e);
}}

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 3

Example (Commands in java.awt)

Command objects are passed to invokers
such as buttons and menu items

ActionListener loadAction = new LoadAction() ;
oadMenultem.addActionListener(loadAction) ;
oadToolBarButton.addActionListener(loadAction) ;

nvokers call their action listeners.

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 4

Example (Commands in java.awt)

<<jnstantiate>>

LoadAction MainFrame
> +loadFile()

<<outer>>

|

|

|

|

|
JButton <<Interfac e>>
+addActionListenen(a : AdionListener) % ActionListener

+acdionPerformed(e : ActionEvent)

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 5

Example (Commands in java.awt)

- MainFrame jButton : JButton

[
| 1) a: LoadAction

2 L(}adAction()

|
I D
3. add AdtionListenena) |
l
I
I
l

A

4: actionPerformed(e)

4 .1: loadFile()

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 6

Pattern Structure

Receiver

+adion()

After Gamma et al

© 2003--10 T. S. Notrvell

Client
_________ =
<<instantiates>> ~ | ConcreteCommand
|
|
Invoker <<Interface>>
IO Conmmand
+execute()

Engineering 5895 Memorial University

Slide set 8. Slide 7

Pattern Collaboration

: Client s Invoker r: Receiver

1. | ¢ : ConcreteCommand

2. C oncrete? ommand(r)
|
|
’.L

3. indall(c)

|
|
:
Later T : 4: execute() |

|
I
I
I
I
I
I
I
I
I
I
I
:
e ’D 4.1: adion() Pllp
' I
I
: |
| |

]

m——————

After Gamma et

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 8

Consequences

Invocation is decoupled from action
(When is decoupled from what)

Actions are data. They can be stored, moved,
extended.

Multiple invoker classes can be mixed and
matched with multiple command classes.

Commands can be aggregated to form
composite commands. (E.g. to form macros.)
See the Composite and Interpreter patterns.

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 9

Undoable Commands

Objects associated with buttons etc create
Change objects and send them to a
ChangeManager.

Each Change object supports doChange,
undoChange, and redoChange.

The ChangeManager sends “doChange” to
the Change and adds it to an undoStack.

The ChangeManager supports undoChange
and redoChange.

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 10

‘ Undoable Commands (cont.)

undoStack

ChangeManager

< 0.7

+doChangelc : Change)
+undoChange()
+redoChangel()

redoStack

< <Abstract> >
Change

-
-~ -
-
-~
-
- -
-
-
- .
-
-
-~

+doChange()
+undoChange()
+redoChangel()

doChange(c : Change) is
c.doChangel)
push ¢ onto undoStack
clear redoStack

undoChangel() is
if undoStack not empty
C := pop undoStack
c.undol)
push c onto redoStack

redoChangel() is
if redoStack is not empty
c := pop redoStack
c.redoChangel()
push ¢ onto undoStack

© 2003--10 T. S. Notrvell

Engineering 5895 Memorial University

Slide set 8. Slide 11

Compound changes

A problem with this scheme is that it forces
the Changes to match Ul cycles (one change
per user interaction).

Suppose we allow multiple Changes to be
applied per Ul cycle.

At the end of each cycle the Ul calls
“checkpoint”

Between checkpoints, compound changes
are built.

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 12

‘ Compound changes (cont.)

checkpoint is

if current not= null C°mP°“ﬂdChaﬂge
push current onto undoStack +CompoundChange(first : Change, second : Change)
current := null

]
ChangeManager <>

undoStack g+ | <<Abstract>>

v

Change
+doChange(c : Change) redoStack _+ |+doChange(
+undoChange() <> +undoChange()
+redoChange() current +redoChange()
+checkpoint() ~

S Emomom . 0.1~
e T T
‘- e e e - ——— .
doChange(c : Change) is B undoChangel() is B redoChangel) is

c.doChangel()
clear redoStack
if currentChange != null

current := new CompoundChange(current, c)
else

current:= c

assert current = null

if undoStack not empty
var ¢ ;= pop undoStack
c.undoChange()
push c onto redoStack

assert current = null

if redoStack not empty
var ¢ ;= pop redoStack
c.redoChange()
push ¢ onto undoStack

AN

© 2003--10 T. S. Notrvell

Engineering 5895 Memorial University

Slide set 8. Slide 13

Example: Compilation in Turtle-Talk

The turtle-talk compiler is intended to be
reusable with different sets of “built-in”

entities: subroutines, types, and constants.

o For example, in the "Maze game”
built-in types include “bool” and “direction”.

7 13 7 13 b (1798

built-in constants include “true”, “false”, “up”, “right”,
“down”, and “left”.

built-in subroutines include
o wall(d : direction) : bool

0 go(d: direction)

0 and many others

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 14

Compilation Example (cont.)

The compiler does not depend on knowledge
of these built-in entities. It is thus reusable.

Each entity is represented by an entry in a
table (the symbol table) that maps its name to
a SympbolTableEntry.

For constants, functions, and procedures,
each SymbolTableEntry has a
CodeGenerationRule object

The CodeGenerationRule objects are
command objects.

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 15

Compilation Example (cont.)

Each CodeGenerationRule has a method

public void apply(int numberOfArgs,
Analyser analyser,
CodeEmitter codeEmitter)

throws TurtleTalkException ;

responsible for:

o checking correct usage (right number and types of
parameters) — via analyser

o indicating return type — via analyser
0 generating code -- via codeEmitter

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 16

Compilation Example (cont.)

Example: the “up” constant of type “direction”.
CodeGenerationRule upCGR = new CodeGenerationRule() {
public void apply(int numArgs,
Analyser analyser,
CodeEmitter codeEmitter)
throws TurtleTalkException
{
analyser.check(numArgs==0, "args after constant");
codeEmitter.emitPush(Maze.UP);
analyser.push(DIR_TYPE); } };

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 17

Compilation Example (final)

When the compiler (invoker) encounters a
function call or a procedure call, it

o looks up the subroutine in the symbol table
o emits code for the arguments

o calls the apply method of the associated
CodeGenerationRule.

References to constants are similar.

(The Teaching Machine also uses CGRs
extensively)

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 18

Strategy Pattern

Idea: Represent strategies (policies) with
objects.

Specialize general purpose classes by
supplying them with strategy objects.

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 19

Example from the AWT

Label

BorderLayout GndbaglLayout
| |
Panel Window | FlowlLayout (
| |
| |
| |
. S l
v [

Container Im <<Interface>>
+add(c : Component) 01 LayoutManager
+setLayout(im : LayoutManager) +layoutContainen(cntr : Container)

0.1 *.
v doLayout() :
Conmponent . if(Im 1= null)
+doLayout() Im.layoutContainer(this)

© 2003--10 T. S. Notrvell

Engineering 5895 Memorial University

Slide set 8. Slide 20

Example from the AWT

Container classes may delegate to their
layout manager to arrange their components.

Clients can set the layout managers allowing
mix-and-match combinations.

Each new layout manager class can be used
with any container class.

Each new container class can be used with
any layout manager class. (In theory at least.)

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 21

Strategy Structure

Context ContreteStrategyA ConcreteStrategyB
+contextinterface()

<<Interface>>
Strategy
+algorthminterface()

After Gamma et al

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 22

‘ Strategy Collaboration

c: Context s : ContreteStrategyA

|
1: setStrategy(s) :

|
I
2: contextinterface() [

2.1: algorithm Interface(context = ¢)

t

===

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 23

Consequences of the Strategy pattern

Main consequences:

o Aspects of a class’s behaviour can be modified by the
choice of a strategy object.

o The client can choose how to combine strategy with
context.

Objects can appear to change class at runtime
Strategies may be stored and looked up.
Alternative to conditional statements.

Orthogonal class hierarchies.

Strategies can form a class hierarchy orthogonal to the
hierarchy of clients

o Alternative to (multiple) inheritance.

oL O 0O O

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 24

Aside: Use inheritance rather than
conditionals

A hypothetical design

class Container { ...

public void doLayout() {
switch(this.layoutKind) {
case BorderLayoutKind : ... break ;
case FlowLayoutKind : ... break ;
case GridbaglLayoutKind: ... break ;} ... }

Clearly this is not extensible.

Any time you use conditional commands, ask
your self if there is an OO alternative.

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 25

Aside: Delegation vs inheritance

Delegation is often preferable to inheritance,
as the delegate can be chosen by the
instantiator and even vary across time.

In a single inheritance language, delegation
provides an alternative to multiple inheritance

Consider a design with inheritance
hierarchies of n concrete contexts and m
concrete strategies. There are m™n
combinations possible for the price designing
m+n concrete classes.

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 26

Example from the Teaching Machine

Expressions are represented by nodes that
form a tree. E.g. “x = (y+z)/ 2" is represented

by objects . OpAssign
. Expld J—— : OpFloat
/ : OpParentheses \'
OpArithmeticConversion
__—"| :OpFloat | —,
: ExpFetch - ExpFetch
~, \ : ConstInt
. Expld . Expld

© 2003--10 T. S. Norvell

Engineering 5895 Memorial University

Slide set 8. Slide 27

Example from the Teaching Machine
Expressions are evaluated by alternately:
0 “Selecting” a ready node
o “Stepping” the selected node

R : OpAssign
~ 27.5 X 27.5
: : OpFloat
@ : Expld @‘ — | \'
“ OpParentheses S 20
550 OpArithmeticConversio
\ >~/ . OpFloat |S—,
: ExpFetch @ ExpFetch
> N 159 . _@: Constlint

- Expld @ @ - Expld

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 28

Example from the Teaching Machine

Expression nodes vary along multiple axes
o Number of children
o Order of evaluation of children & self (selection)

o Execution algorithm (stepping)
o Conversion of self to string for display

The first version of the TM tried to use inheritance to
accommodate these multiple axes of variation.

The result was a deep and complex inheritance
hierarchy that still did not eliminate duplication

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 29

Example from the Teaching Machine

The TM was redesigned so

o Each subclass of node knows two strategy
objects.

o One strategy determines the order of evaluation of
children & self. (Selection)

o One strategy determines the execution algorithm
(Stepping)
o Both are set in the constructor

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 30

Example from the Teaching Machine

Consider execution (stepping).

The step method for nodes delegates to a

Stepper object:
public void step(VMState vms) {
Assert.check(stepper !'= null) ;
stepper.step(this, vms) ;

}

The stepper for Constint:

public void step(ExpressionNode nd, VMState vms) {
create an object representing the integer
associate the node, nd, with this new object }

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 31

Example from the Teaching Machine

Constint
AlwaysSelector <<instantiate>> <<instantiate>> StepperConstint
D efaultE xpressionNode

+step(vin s : VMState)
+setSelecton(sel : Selector)
+setStepper(stpr : Stepper)

I
I
I
I
I
I
I
I
I
I
I
I
I
v <<Interface>>

<<Interfac e>> Expressioninterface \V4
Selector +step(vm s : VMState) <<Interfac e>>
+seled(node : E xpressionNode, vims : VMState) +sele<?t(wns: VM State) S.teppef
+toString(vm s : VMState) +step(node : ExpressionNode, vins : VM State)

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 32

Example from the Teaching Machine ---
Caveat

The setting of strategies is done in the contexts’
constructors, not by the client

Thus this use of the strategy pattern in the TM is
strictly internal to the node package. l.e. the strategy

pattern is used only as an implementation
technique.

By contrast the strategy pattern usually provides the
client with a selection of contexts and strategies and
the ability to extend either.

The TM approach means the client is provided with
many context classes, but no strategy classes.

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 33

Retrospect on Strategy in the TM

In retrospect, the use of strategies for selection was
highly successful. A small number of strategies are
reused in various contexts

The use of Stepper strategies was less successful.
Stepper subclasses and ExpressionNode
subclasses were in almost a one-one and onto
correspondence, so the benefit was negligible.

However as the extra complication was internal to
the node package, the cost was contained. l.e. no
cost was paid by client code.

Furthermore we did make use of stored Steppers to
implement built-in function calls --- an unexpected
benefit.

© 2003--10 T. S. Norvell Engineering 5895 Memorial University Slide set 8. Slide 34

