
1

Structural Patterns

From Gamma et al.

© 2003--2009 T. S. Norvell Memorial University Slide set 9. Slide 2

Behavioural, Structural, Creational
Patterns
  Recall that patterns fit broadly into three

categories: Behavioural, Structural, and
Creational.

  The Observer, Command, and State patterns
are Behavioural, they focus on behaviour

  Structural patterns focus on the relation
between behaviour and structure.

  Next we look at two structural patterns:
Composite and Proxy.

© 2003--2009 T. S. Norvell Memorial University Slide set 9. Slide 3

The Composite Pattern

  Idea: “Compose objects into trees structures to
represent part-whole hierarchies”

  Example: AWT:
  Visible widgets are represented by Components.
  Components may be Containers.
  So that Components form a tree.
  Containers combine multiple Components
  Each Container provides a coordinate system for its

immediate descendants.
  A call to “paint” (for example) on any container is forwarded

recursively down to descendants.

© 2003--2009 T. S. Norvell Memorial University Slide set 9. Slide 4

General relationships

© 2003--2009 T. S. Norvell Memorial University Slide set 9. Slide 5

Composite Pattern in AWT

© 2003--2009 T. S. Norvell Memorial University Slide set 9. Slide 6

Delegation to child

© 2003--2009 T. S. Norvell Memorial University Slide set 9. Slide 7

Example from the Teaching Machine

  Expressions are represented by nodes that
form a tree. E.g. “x = (y+z) / 2’’ is represented
by objects : OpAssign

: ExpId : OpFloat

: OpParentheses

: ConstInt
: ExpId : ExpId

: OpFloat
: ExpFetch : ExpFetch

: OpArithmeticConversion

© 2003--2009 T. S. Norvell Memorial University Slide set 9. Slide 8

Example from the Teaching Machine
  Expressions are evaluated by alternately:

  “Selecting” a ready node
  “Stepping” the selected node

: OpAssign

: ExpId : OpFloat

: OpParentheses

: ConstInt
: ExpId : ExpId

: OpFloat
: ExpFetch : ExpFetch

: OpArithmeticConversion

x

y
13.0

z

42.0

55.0

55.0

2

2.0

27.5 27.5

© 2003--2009 T. S. Norvell Memorial University Slide set 9. Slide 9

Selection in detail
  Selection starts with the root and is delegated

downward until a node is found that is ready
to be stepped.

: OpAssign

: ExpId : OpFloat

: OpParentheses

: ConstInt
: ExpId : ExpId

: OpFloat
: ExpFetch : ExpFetch

: OpArithmeticConversion

x

y
13.0

z

42.0

?

?

?

?

© 2003--2009 T. S. Norvell Memorial University Slide set 9. Slide 10

Selection strategies
  Left to right selection strategy

  if all children of this node have been stepped
  select this node

  else
  pick the left-most unstepped child
  recursively delegate selection to that child

  Conjunction (&&) selection strategy
  if the left child hasn’t been stepped

  recursively delegate selection to the left child
  else if left child’s is false or right child has been stepped

  select this node
  else

  recursively delegate selection to the right child

© 2003--2009 T. S. Norvell Memorial University Slide set 9. Slide 11

Element trees in swing.text

Structured documents such as HTML pages
are represented by Element objects.
  Each element is either a branch or a leaf
  Each element is associated with views
  E.g. <html><body><p>hello</p>
 <p>world</p></body></html> html

body

p p

hello world

© 2003--2009 T. S. Norvell Memorial University Slide set 9. Slide 12

Composite Pattern: Consequences

  (+) Client need deal only with root: Existence
of children can be hidden.

  (+) Easy to extend design by defining new
kinds of nodes.

© 2003--2009 T. S. Norvell Memorial University Slide set 9. Slide 13

Proxy Pattern

  Idea: Provides a surrogate or placeholder for
another object.

  The Subject object and the Proxy object
implement the same interface.

  The client typically does not depend on
whether it is using the subject or the proxy.

  Proxy can be used to hide latency, hide
remoteness, cache results, add functionality.

© 2003--2009 T. S. Norvell Memorial University Slide set 9. Slide 14

Proxy Pattern Structure

© 2003--2009 T. S. Norvell Memorial University Slide set 9. Slide 15

Example: Remote Method Invocation in
Java (java.rmi)
  RMI allows client objects on one (virtual) machine to

call methods of server objects on another machine.

© 2003--2009 T. S. Norvell Memorial University Slide set 9. Slide 16

Java RMI

  A program automates production of stubs
and skeletons.

  A registry process helps clients find servers.
  Syntactic interface to proxy is identical to

interface to server.
  Semantic interface is almost the same.

© 2003--2009 T. S. Norvell Memorial University Slide set 9. Slide 17

Example JSnoopy testing framework

  Goal: Allow automated regression testing of GUIs.
  Idea: Use proxy objects to observe all information

between the GUI and the underlying application.
  Information means: messages (recipient, method,

arguments), returned values, and exceptions.
  Capture:

  A test is performed by a human tester via the GUI.
  The tester visually verifies the software is working.
  All information is captured and saved to file.

© 2003--2009 T. S. Norvell Memorial University Slide set 9. Slide 18

Example JSnoopy testing framework

  Now the software is changed and we need to check
that what worked before still works.

  Replay:
  Previously captured calls are injected via the proxies.
  All information is captured.
  The newly captured information is compared to the

previously captured information.
  Discrepancies are reported.

  The application layer and the GUI layer are
indifferent to the existence of proxies.

  Java makes it easy to create these proxy objects
(See java.lang.reflect.Proxy)

© 2003--2009 T. S. Norvell Memorial University Slide set 9. Slide 19

Proxy Objects

JSnoopy

Capture and Replay of
Message Events in
Java

Capture
Agent

GUI Layer

Application Layer Stored Message
Sequence

Compare Replay
Agent

System Under Test JSnoopy

User

Capture Phase
Test Phase

Production configuration

© 2003--2009 T. S. Norvell Memorial University Slide set 9. Slide 20

JSnoopy

  Arguably the JSnoopy example is an
example of the Decorator pattern

  In the Decorator pattern new responsibilities
are added to the underlying subject.

  In the Proxy pattern the service with and
without the proxy is the same.

  The line is fuzzy.

© 2003--2009 T. S. Norvell Memorial University Slide set 9. Slide 21

Proxy Pattern: Consequences

  (+) Proxies add a layer of functionality without
affecting either the client or the subject.

  (+) Proxy can hide the differences between
communicating with local vs. remote objects.

  (+) Proxies can hide latency. E.g. by
providing minimal functionality before the real
subject is loaded.

  (-) Use of proxy may change semantics of
calls.

