
Fourth Program Visualization Workshop 1

Program and Algorithm Visualization in Engineering and
Physics

Michael P. Bruce-Lockhart, Theodore S. Norvell
Memorial University of Newfoundland

Yianis Cotronis
University of Athens

mpbl@engr.mun.ca

Abstract

We report here on our experiences using a program animation tool, the Teaching
Machine, for program and algorithm visualization for engineering and physics students at
two universities. and the University of Athens, where it was adopted in 2005 to teach
Physics students.

1 Introduction

We report here on our experiences using the Teaching Machine (TM) for program and al-
gorithm visualization for Engineering and Physics students at two different sites: Memorial
University, where it has been used since 1999 for teaching engineering students, and the
University of Athens, where it was adopted in 2005 to teach Physics students.

The outline of the paper is as follows: In Section 2 we discuss the problem of what
should be modelled in a program animation system. Section 3 is a short introduction to the
TM. Sections 4 and 5 are respectively experience reports from Memorial University and the
University of Athens. Section 6 presents a summary.

2 The Modeling Problem

Given a system T , Norman (1983) defined M(T ) as the mental model held by particular user
of that system and C(T ) as a conceptual model, a “tool for the understanding or teaching
of” T . Norman makes it clear T represents a physical system (in his paper a calculator).
Yehezkel et al. (2004), in introducing EasyCPU, pointed out that if one replaces the actual
system with a learning model L(T ), the M(T ) that a student arrives at may be different from
the one arrived at if they had interacted with the original system. In as much as EasyCPU
represents an Intel 80x86, T is still a physical system. In teaching early programming courses,
what is the T of which we desire students to develop an effective mental model?

In developing the TM (Norvell and Bruce-Lockhart, 2000, 2004), we thought about that
problem a lot. Working with weaker students in the lab, we found a lot of superstitious
behaviour: they would throw lines of code at a problem as if they were spells, with little
understanding of what they meant. We found ourselves preaching that every line of code had
a specific meaning and purpose, that it was an instruction to a machine. Developing in the
students an effective mental model of that machine goes a long way toward teaching them to
reason about the code they write. That machine, T , we were programming (and which we
wanted the students to understand) was not really a computer, at least in the conventional
sense. Consider the following simple C++ code:

int x = 5; int y = 12; int z; z = y/5 + 3.1;

In the language of programming, we say, there are four instructions to be executed. Instructions
to what and to be executed by what? T of course, but T is certainly not the hardware. The
first three “instructions” are actually to the compiler. We view them as request for allocation
of memory, in the stack if they are internal declarations, in the static store if external. The
fourth is a minefield. There is a truncation and two automatic type conversions. If you really



2 Fourth Program Visualization Workshop

want students to understand it you, need to be able to interpret the expression and see the
conversions, but these are normally inserted by the compiler. CPU operations include fetching
the value for y (whether in a register or memory), carrying out the various calculations, and
writing the final value back to z.

We define T to be the abstract machine to which we are giving source-level instructions.
That is, T is largely defined by the language; it is an abstraction combining aspects of the
computer, the compiler, and the memory management scheme.

The TM was then designed as a means to show the students how this machine worked, so
they could write programs to control it.

3 The Teaching Machine

The TM has been described elsewhere (Norvell and Bruce-Lockhart, 2000, 2004) so we will
review it only very briefly. The TM interprets source programs in C++ or Java while dis-
playing visualizations of the program and the abstract machine state: the current expression
under evaluation, the memory (stack and heap), the symbol table, and a console for I/O.

Before the TM we were using debuggers to good effect. We believe, as do others (Cross
et al., 2002), that debuggers are a powerful tool for visualization on they’re own; so we built
the TM on the metaphor of a debugger. Since we expected students to continue to use
debuggers in the lab, it eases the burden on them of learning two tools.

As of 2006 the TM supports C++ and Java. For each language, the model consists of a
compiler, an interpreter, and a model of the abstract machine’s state. The compiler translates
source code to a high-level machine code that is then interpreted. Using a high-level machine
code for an abstract machine allows us to preserve such information as the tree-structure of
expressions, the tree structure of the data, and the data-types of each data object.

The Teaching Machine reads in standard C++ or Java files, generally prepared using
conventional tools. There are some restrictions on what it can handle, as neither compiler
is a complete implementation. For example, we have implemented neither threads in Java
nor templates in C++. Nevertheless, the subsets that are supported are large, standards
conforming, and work well in the courses in which the TM has been used.

The source files are displayed in a source window where they may be stepped using stan-
dard debugger controls. There are separate windows for each type of memory store—in C++,
static store, stack, and heap. There is a window that displays expressions, with buttons to
allow them to be stepped-through separately. This display, called the Expression Engine, is
similar to the Expression Evaluation Area of Jeliot 3 (Moreno et al., 2004). There is a simple
display for console input and output. Finally there is a Linked View, which automatically
generates graphical depictions of data structures, in a manner similar to that of the LJV tool
(Hamer, 2004). All views evolve dynamically as the program is executed and all execution
steps can be undone and replayed.

4 Experience at Memorial University

At Memorial University, the TM is used in a three course stream in Electrical and Computer
Engineering: Structured Programming (ENGI-2420), Advanced Programming (ENGI 3891),
and Data Structures (ENGI-4892). ENGI-2420 teaches the basics of programming to all
Engineering students, while 3891 emphasizes the use of classes and introduces pointers and
heap allocation. ENGI-4892 emphasizes recursion and linked structures such as linked lists
and trees.

Use of the TM in 3891 evolved through two transitions:

• From 1999 to 2001, we continued to use our old lecture transparencies but moved to
the TM to illustrate specific points of interest. The TM was used more than the debug-
ger, since it could show constructs the debugger could not. We spent less time at the



Fourth Program Visualization Workshop 3

Cohort ENGI-3891 2001 ENGI-3891 2002 ENGI-3891 2004

Response 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1

2. (effectiveness vs. manual means) 31 49 12 4 2 48 26 7 2 0 59 35 4 2 0

3. (effectiveness vs. computer means) 10 65 16 2 2 33 45 10 2 0 51 37 4 0 0

4. (understanding of examples) 16 65 16 2 0 38 45 10 2 0 55 43 2 0 0

12. (understanding of examples on-line) 11 56 22 11 0 30 48 13 9 0 35 41 12 0 6

Table 1: Survey results. Results in percentage of respondents.

blackboard drawing and spent more time discussing examples with the students. Using
the TM, however, drew us to different examples. Its use was subtly changing what we
taught. We found our slides and examples rapidly getting out of sync.

• In 2002, in order to provide a fully integrated experience in the lecture and to give
students access to interactive notes afterwards, we took advantage of the fact that the
TM was a Java applet to integrate it directly into the notes, which were rewritten in
HTML. We realized that we had to make it as easy as possible for instructors to author
such interactive notes, so we created WebWriter++ (Bruce-Lockhart, 2001), a set of
javascripts with a couple of additional applets. The smooth integration considerably
increased the amount of lecture time spent running examples in the TM. ENGI 4892
moved to the same format the next academic year, with the Linked View being used
predominantly.

Student surveys have been carried out from time to time. Table 1 shows the results for
three consecutive cohorts of ENGI-3891 students. The 2001 cohort (51 surveys out of 55
students) got the TM in standalone mode with fewer examples. The 2002 cohort (42 of 63)
got integration, but notes were developed on the fly. The 2003 cohort was actually surveyed
at the end of 4982 in 2004, when separate surveys were given to the same group of students
(26 of 44 responded of whom 23 had done 3891); because the results were so similar the
two were combined. For each question, 3 represents a neutral response, with 5 and 4 being
very and somewhat positive, and 1 and 2 being very and somewhat negative. The table
reports percentages with missing values representing either ‘not applicable’ or no response
at all. All three cohorts had either not seen the TM at all or had seen very limited use of
it in their first programming course, ENGI-2420, so were able to compare its effectiveness
vs. other means (questions 2 and 3). Question 4 asked about the effect of the TM on the
student’s understanding of the examples it was used on, while question 12 asked about effect
on understanding for those students who ran examples themselves on-line (only 9 of 51 in
2001, when few examples were available on-line; 23 of 42 in 2002 and 34 of 49 in 2003/2004).
As can be seen, the results become more positive as the integration with the course notes
becomes tighter.

Teacher ratings were independently surveyed. Figure 1 shows the results for 3891 through
the last five years, using the same instructor. 2003 represents the mature version of the course
as currently taught. Long regarded by students as one of the most difficult in Electrical and
Computer Engineering, it was allotted four hours teaching hours a week, instead of three.
Student satisfaction rose sufficiently high that in 2004 the Faculty of Engineering decided to
cut the course back to three hours a week. Approvals dropped back to historic levels, but
the course was delivered using 25% fewer lectures, while covering the same material, with no
effect on outcomes. With this as evidence, the TM was (and is) regarded by the Faculty as
successful in improving the delivery of 3891. A decision to move it into ENGI-2420 in 2004
was made on that basis.

The impact of the TM in 2420 is hard to measure yet due to confounding factors such as a
doubling of the section size to over 200 and a change to the curriculum. In trying to make his



4 Fourth Program Visualization Workshop

Figure 1: Quality of instructor ratings for 3891. 2=fair, 3=good, 4=very good, 5=excellent.

notes and lectures as understandable as possible in such a large venue, the instructor (Bruce-
Lockhart) fell into a classic trap. The students got into the habit of letting the instructor do
all the work. In the taxonomy developed at the 2002 Programming Visualization Workshop
(Rößling et al., 2004) we collectively got stuck at stage 2: viewing. Although the TM had
been designed to allow students to study examples on their own, and the students of 3891
and 4892 appear to be doing just that, the message hadn’t been properly delivered to 2420
students. As an interim measure, the entire class was taken to the lab in sections and walked
through fresh examples of pass-by-value vs. pass-by-reference. The objective was to get them
to use the TM themselves and take them to the point where they could predict what the
next step would produce (stage 3, responding). It is too early to tell what the real impact is
yet, but numerous students approached the instructor afterwards to express approval of the
technique and to suggest it be a regular feature of the course, but much earlier in the term.

5 Experience at Athens

At the University of Athens one of the authors has been teaching the subject of Principles
of Programming Languages and Programming Techniques for the past six years, as part of
the curriculum of a joint M.Sc. degree between the Departments of Physics and Informatics
& Telecommunications. It is a well-known and highly respected conversion programme in
which mostly Physics graduates from a number of Greek Universities enrol. The course is
divided into three parts: the first and second parts discuss syntax (regular expressions, BNF)
and computation aspects of programming languages, respectively; the third part discusses
programming techniques (structured programming, top down program development).

The TM was introduced the fall 2005 semester augmenting teaching for the second and
longest part, the computational aspects. Our teaching approach is analytical rather than
empirical, aiming for exposing students to concepts recurring in programming languages,
rather than teaching a specific language; students separately follow a two hour per week course
on C. The teaching material for the past three years has been based on the six computation
chapters of Part II of Fisher and Grodzinsky (1993), which fits well with our teaching approach.
Students were given a number of small course-work exercises, which aim to practice and
establish concepts.

Although students were satisfied with the course and appreciated the importance of it, they
could not complete all exercises and they just “passed” the final written paper. A number
of reasons contributed to this situation, the most significant being the difference between
the cultures of Physics and Computer Science: most physics students consider programming
“simple” when compared to laws, theories and models of the world. Consequently, as they
are not easily convinced that a more complex programming world exists, they keep their
misconceptions on how programs work.



Fourth Program Visualization Workshop 5

We were convinced that a visualizing tool would help to clarify concepts and bring out
their misconceptions, a tool which would visualize program execution above the level of a
compiler. Having taught compilers for a number of years, we did not want a tool for visualizing
compilers, but acting as the operational semantics for languages abstracting away compiler
details. Searching the Web, we came across the TM, which proved to be the tool that we
needed, at least regarding the abstraction level. The TM displays memory (static, stack, and
heap), in which values of objects are depicted in decimal and binary, showing the address
and space they actually use; and a stack implementation of a symbol table. TM has three
levels of visualizing program execution (procedures, statements, and expressions) all with
backtracking. It also has a Linked View (objects and pointers to them are actually depicted
as graphs), which was really an unexpected and valuable feature.

We found that the TM did not impose at all on our teaching approach, but rather com-
plemented it. We implemented tens of small programs demonstrating programming concepts,
in the spirit of Fisher and Grodzinsky (1993). The TM could depict each point in focus. We
were able to demonstrate principles, consequences, and some “not expected” behaviour. Let
us mention a few notable examples. The (binary) representation of float and double was used
to show that (1.0/n)∗n may not be 1 (a really surprising fact for physicists), or that we could
“compute” sin(x) and get a value greater than 108. It was demonstrated that the concept
most students had for one-to-one association of variable names to objects in memory is a
misconception. We relied on the expression execution of the TM to demonstrate that expres-
sions in C++ may be undefined and return strange results. We demonstrated the differences
between parameter passing by (pointer) value and by reference; a misconception found not
only among students but also in a number of programming books.

Most of the programs were demonstrated in class, but, as students had a copy of the TM,
they could run their own programming experiments at home and very frequently came in class
with questions.

We believe that most, if not all, learning styles as proposed by the Felder and Silverman
(1988) may benefit from the use of TM. Active learners (AL) tend to retain and understand
information best by doing something active with it; reflective learners (RL) prefer to think
about it quietly first. AL may try their own programming “experiments” while RL have the
opportunity to review the material shown in class using the TM.

Sensing learners tend to like learning facts while intuitive learners (IL) often prefer dis-
covering possibilities and relationships. The TM only helps with IL but everybody is sensing
sometimes and intuitive sometimes.

Visual learners (ViL) remember best by demonstrations. Clearly the Teaching Machine
is strongly oriented toward ViL. Verbal learners (VeL) get more out of words–written and
spoken explanations. Although VeL may benefit less, it is accepted that everyone learns more
when information is presented both visually and verbally.

Sequential learners (SL) tend to gain understanding in linear steps, with each step fol-
lowing logically from the previous one; global learners (GL) tend to learn in large jumps,
absorbing material almost randomly without seeing connections and then suddenly “getting
it.” Textbooks and classes essentially benefit SL as each teaching topic focuses on a specific
aspect of programming. As the TM is the unique tool for demonstrating all programming
topics, GL tend to benefit as well since the “whole picture” is there at any time.

6 Summary

The TM has proved to be useful in the delivery of a variety of courses. Its ability to handle
both physical and abstract models has made it successful for helping engineering and physics
students understand the abstract machine defined by the programming language. In one case
it has helped reduce the resources required to teach a course. Its deep modeling of how a
compiler and a processor interact allowed it to be used at Athens in ways the original designers



6 Fourth Program Visualization Workshop

had not anticipated.
Does it help students develop effective mental models: M(T ) approximating the instructors

C(T )? Anecdotal evidence supports this conclusion: one anonymous response to the Memorial
surveys is telling. “The Teaching Machine provides a great means of visualizing the internal
mechanisms and operations of software. When I write code, I visualize how the Teaching
Machine would translate it.”

Finally, we have come to realize that the TM is a solid platform for new developments. It
is easy to use, robust, flexible, and reasonably complete. Its data model is easily extendable to
more powerful, algorithmic visualizations. By providing it with specialized input and output
plugins we can provide better visualizations and better interactivity; we expect that adding
such plugins will be far easier than developing specialized visualizers from scratch.

References

Michael P. Bruce-Lockhart. WebWriter++: A small authoring aid for programming. In Pro-
ceedings of the Newfoundland Electrical and Computer Engineering Conference, St. John’s,
Newfoundland, 2001.

James H. Cross, T. Dean Hendrix, and Larry A. Barowski. Using the debugger as an integral
part of teaching CS1. In 32nd ASEE/IEEE Frontiers in Education Conference, pages F1G–
1–F1G–6, 2002.

Richard M. Felder and Linda K. Silverman. Learning and teaching styles in en-
gineering education. Engineering Education, 78(7):674–681, 1988. With preface
http://www.ncsu.edu/felder-public/Papers/LS-1988.pdf (2002).

A. E. Fisher and F. S. Grodzinsky. The Anatomy of Programming Languages. Prentice-Hall,
1993.

John Hamer. A lightweight visualizer for Java. In Proceedings of the Third Program Visualiza-
tion Workshop, Research Report CS-RR-407, Department of Computer Science,University
of Warwick, pages 54–61, 2004.

Andrs Moreno, Niko Myllerand Erkki Sutinen, and Mordechai Ben-Ari. Visualizing programs
with Jeliot 3. In Advanced Visual Interfaces, 2004.

Danald A. Norman. Some observations on mental models. In Dedre Gentner and Albert L.
Stevens, editors, Mental Models, chapter 1, pages 7–14. Lawrence Erlbaum Associates, 1983.

Theodore S. Norvell and Michael P. Bruce-Lockhart. Taking the hood off the com-
puter: Program animation with the Teaching Machine. In Canadian Electrical and
Computer Engineering Conference, Halifax, Nova Scotia, May 2000. Available at
http://www.engr.mun.ca/∼theo/Publications.

Theodore S. Norvell and Michael P. Bruce-Lockhart. Teaching computer programming with
program animation. In Canadian Conference on Computer and Software Engineering Edu-
cation, Calgary, Alberta, 2004. Available at http://www.engr.mun.ca/∼theo/Publications.

Guido Rößling, Felix Gliesche, Thomas Jajeh, and Thomas Widjaja. Enhanced expressive-
ness in scripting using AnimalScript 2. In Proceedings of the Third Program Visualization
Workshop, Research Report CS-RR-407, Department of Computer Science,University of
Warwick, pages 10–17, 2004.

Cecile Yehezkel, Mordechai Ben-Ari, and Tommy Dreyfus. Inside the computer: Visualization
and mental models. In Proceedings of the Third Program Visualization Workshop, Research
Report CS-RR-407, Department of Computer Science,University of Warwick, pages 82–85,
2004.


