
1

Animation with Timers

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 2

A single threaded approach

  Using threads has a down side.
  Thread safety has to be ensured.
  Deadlock has to be avoided

  Using timer objects is an alternative.
  A timer object is an object that periodically

messages a command object.
  These messages are on the GUI event

thread so multithreading is not an issue

The “simple time animation” example

  The timer sends events to a “sprite” object
which updates its state.

  The timer also sends repaint messages to the
display system.

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 3

The action based animation example

  Here the “sprites” are passive objects that
can paint them selves and be repositioned.

  The behaviour is factored out into Action
objects.

  An ActionPerformer object encapsulates the
Timer and sends “tick” messages to an
Action object.

  Composite actions can be formed from a list
of individual actions.

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 4

ActionPerformers

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 5

Animation Actions

public enum AnimatnActionState { INIT, DONE }

public interface AnimatnActionI {
public void init() ;
public void tick() ;
public AnimationActnState getState() ;

}

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 6

An ActionPerformers controls an
AnimatnActionI

public class ActionPerformer extends Observable {
 public enum State {
 READY, RUNNING, PAUSED, DONE } ;
 private State state = State.DONE ;
 private ModelI model;
 private AnimationActionI action;
 private Timer timer ;

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 7

An ActionPerformer sends ticks to its
AnimatnActionI

 public ActionPerformer(ModelI model) {
 this.model = model;
 timer = new Timer(20, new ActionListener() {

 @Override public void
 actionPerformed(ActionEvent e) { tick() ; } }) ;

}
private void tick() {

 if(state == RUNNING) { action.tick();
 if(action.getState() == ActionState.DONE) {
 timer.stop() ; state = State.DONE ;
 action = null ; setChanged() ; }
 model.alert() ; notifyObservers() ; } }

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 8

ActionPerformer: remaining methods

  Remaining methods change and report
the ActionPerformer’s state

public void makeReady(AnimatnActionI action)
public void start()
public void pause()

public State getState()

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 9

ActionPerformer state chart

© 2003 T. S. Norvell Engineering 5895 Memorial University Graphics & Animation. Slide 10

DONE READY

RUNNING PAUSED

makeReady()

start()
When the action is
DONE

pause()

start()

(makeReady can be sent to the actionPerformer regardless of state)

