
Software Design Unit 0 Theodore Norvell

What is Software Engineering all

about?

Many people can build an AM radio. Are they Electrical

Engineers?

Many people can build a log cabin. Are they Civil

Engineers?

Many can program. Are they Software Engineers?

Software Engineers can:

• Deal with large and complex systems.

• Precisely specify the behaviour of software.

• Create software with required behaviour.

• Design software that can be adapted.

• Adapt previous designs.

• Do all this when the software is huge and requires many

software engineers to cooperate.

September 16, 2019 1



Software Design Unit 0 Theodore Norvell

Why is SE important to Computer

Engineering

Digital systems contain hardware and software components.

Hardware is usually stock.

Functionality is shifting to software.

• Software has lower manufacturing cost.

• Software promises greater flexibility and functionality.

• Examples:

∗ Phone switches. Imagine modern features without

software.

∗ Oscilloscopes.. Analogue —> Digital —> Computer

based.

∗ Data bases. Filing cabinets —> software

∗ Wordprocessing: Typewriters —> software

∗ Phones. Analog devices —> Digital—> software

September 16, 2019 2



Software Design Unit 0 Theodore Norvell

The nature of software

Software must interact with hardware and other software

• Thus it must be precise.

Software errors can be hard to detect and trace.

• Thus it must be correct.

Software is hard or impossible to test completely.

• Thus it should be demonstrably correct.

Errors can be fatal or costly

• Thus it should be demonstrably correct.

Requirements change and errors occur

• Thus it must be flexible

Programs come in multiple versions

• Thus it must be changeable

Software is expensive to design

• Thus designs (and code) should be reusable

September 16, 2019 3



Software Design Unit 0 Theodore Norvell

The nature of software production

Driven by multiple goals: Cost, time, quality, functionality.

Complex. Software must be designed, as well as written.

Complexity exceeds one mind. —Thus needs planning and

documentation.

Software is low level embodiment of mental abstractions.

—Thus needs planning and documentation.

Multi-person. — Thus needs planning and documentation.

Expensive — Reuse of code and designs is important.

September 16, 2019 4



Software Design Unit 0 Theodore Norvell

Some examples

Most commercial jets are now “fly-by-wire”

• Pilot controls computer, computer controls airplane

• Software is suspected in several crashes

• 737 MAX crashes caused by failure to design software to

behave correctly in the presence of sensor error.

U.S. Airline lost 65M$

• Reservation system reported flights were as sold-out.

Patients were burned or killed by the Therac-25 radiation

machine.

• Software error was to blame. Poor (software) engineer-

ing?

Arianne 5 lost with 650M$ satellites

• Software error was to blame. Poor (software) engineer-

ing?

Finite element analysis program used to design oil-rig

• Rig sank in sea trials.

Denver Airport opens late. Cost 1G$?

• Software to blame in part

September 16, 2019 5



Software Design Unit 0 Theodore Norvell

Qualities of good software

External (of concern to end user)

Usefulness

• Is it what the end user wants?

Performance

• Is it fast enough?

• Is it small enough?

Correctness

• Does the product meet its specification?

• E.g. Compiler. Does it report at least on error for any

erroneous program?

• Software is either correct or it isn’t.

• Definition presupposes an unambiguous specification.

Reliability

• Does the product do what the user wants most of the

time?

• Definition is subjective.

Robustness

• Product is resilient to error (internal or external).

Usability

• User interface provides easy access of the functionality.

• Depends on nature of user: Mousy interfaces may be

better for novices.

September 16, 2019 6



Software Design Unit 0 Theodore Norvell

Interoperability

• Use of standards. Standard file formats, clip-board, OLE,

etc.

User documentation.

September 16, 2019 7



Software Design Unit 0 Theodore Norvell

Qualities of good software

Internal

Attributes of products of software engineer: Source code

and documentation.

Correctness:

• Is internal documentation self-consistent.

• Is source code consistent with documentation.

Changeability

• Can the software be easily changed?

• Can most likely changes be made most easily?

Understandability

• Is source and documentation understandable

Reusability

• Can components be reused in other projects?

September 16, 2019 8



Software Design Unit 0 Theodore Norvell

Qualities of good software

Process

Cost

• How much will it cost to produce?

• How much will it cost to maintain?

Timeliness

• When will it be ready?

Controllability

• Can the progress of the production be monitored?

September 16, 2019 9



Software Design Unit 0 Theodore Norvell

Poor Design and Good Design

Robert Martin’s Symptoms of poor design

• Rigidity — The design is hard to change

• Fragility — The design is easy to break

• Immobility — The design is hard to reuse

• Viscosity — It is hard to do the right thing

• Needless Complexity — Overdesign

• Needless Repetition — Mouse abuse

• Needless Repetition – Just kidding

• Opacity — The design is hard to understand.

Conversely: the signs of good design

• Adaptability — The design is easy to change

• Robustness — The design is hard to break

• Reusability — The design can be reused

• Fluidity — It is easy to do the right thing

• Simplicity — The design is the “simplest thing that will

work”

• Terseness — No unneeded duplication of code

• Perspicuity — Organized and clear

September 16, 2019 10



Software Design Unit 0 Theodore Norvell

S.E. Products

Direct Products of S.E. (Deliverables)

• Requirements Document

• Specification

• User documentation

• High-level design documentation

• Source code

• Executable code

Indirect product

• Behaviour — ultimately the above all describe behaviour

as much as structure

Software Engineering is Behaviour Engineering.

Time is what makes software (and CE/EE) interesting and

difficult.

Aside: Civil engineers design buildings and bridges etc.

Actual physical objects. They don’t design blueprints.

Similarly software engineers don’t design software, they

design behaviour. Behaviour —while not a physical

object— is a part of reality. When the behaviour is fully

designed and described in source code, we are done, just as a

civil engineer is done when a building is described by blue-

prints. However there is a difference. The correspondence

between a blue-print and a building is straight-forward. The

correspondence between source code and behaviour is not.

This is why software engineering is very challenging. (Same

September 16, 2019 11



Software Design Unit 0 Theodore Norvell

comment applies with suitable ammendments to other parts

of computer engineering and to electical engineering.) End

of aside.

September 16, 2019 12



Software Design Unit 0 Theodore Norvell

What is “designing” and what is “the

design”?

In English the word “design” is a verb and a noun.

“Design” refers both to three things

• the process of designing

• the decisions made during that process (“it’s all designed,

but still in my head”), and

• the written expression of those decisions.

As engineers, an important part of your job is to produce

designs and express them accurately.

So what is the design?

We must design and describe the desired behaviour of the

system.

• Thus the “requirements and specification documents”

and the “user documentation” might be considered part

of “the design”

We must achieve that desired behaviour

• High-level design documentation — describes how that

behaviour is to be achieved at a high-level, without going

into all the details of the source code.

• Source code — describes how the behaviour is to be

achieved in full detail.

• Source comments — supplements the source code with

natural (or sometimes mathematical) descriptions.

September 16, 2019 13



Software Design Unit 0 Theodore Norvell

Are the source code and the source comments really part of

the (expression of) the design? See Reeves’ article1 ‘What

is software design?’

Reeeves’ key arguments:

• By considering source code as (part of) the design, we can

properly verify our design. Otherwise the process lacks

the feed-back loop characteristic of other engineering

disciplines.

• Translating high-level design to source is not a matter of

routine. Software is too complex and the devil is often in

the ‘details’.

• Note that Reeves does not claim that the source code is

the only expression of the design.

Tools just as Javadoc allow parts of the source code together

with parts of the source comments to be abstracted to form

a sort of high-level design documentation.

1 http://www.developerdotstar.com/mag/articles/reeves_design_main.html and also

appendix D in Martin’s Agile Software Development.

September 16, 2019 14



Software Design Unit 0 Theodore Norvell

Change

All successful software is changed.

Sources of change:

• User needs change.

• Hardware/Software platform changes.

• Additional platforms are supported.

• Errors are corrected.

• Efficiency is improved.

• New features / capabilities are added.

• A similar but different product is required.

Fact: Most of the cost of software is spent changing it not

developing new systems.

September 16, 2019 15



Software Design Unit 0 Theodore Norvell

Planning for change

Identify likely varieties of change.

Design for change.

Document that design.

Software decay

When software is changed in ways that undermine its design

(see symptoms of poor design), it decays.

Changes lead to bugs – bugs lead to more changes — a

downward spiral.

Refactoring

When an unanticipated change is needed, first redesign so

that this change and ones like it are natural. Then make the

change.

This way the software becomes more adaptable in response

to change, rather than more rigid and more viscous.

September 16, 2019 16



Software Design Unit 0 Theodore Norvell

The Software Development Process

Software Engineering consists of a number of activities.

Requirements analysis

• Figure out and document what is required of the product

• Output: Requirements document (often uses UML

use-cases)

Specification

• Decide on the exact external behaviour and properties of

the product

• Output: Specification document (often uses UML model

of the domain and use-cases)

Test planning

• Output: Test plan

High-level design

• Decide on the internal structure of the product

• Output: Design document and (often uses UML model of

the software)

Implementation (aka low-level design)

• Coding. Unit testing. Peer review.

• Output: Code

System testing

• Output: Test report

User documentation

September 16, 2019 17



Software Design Unit 0 Theodore Norvell

• Output: User manual, help pages, etc.

Development Process (cont.)

The activities are typically not done in sequence.

Rather they are interleaved and iterated.

E.g.: specify, design, code, revise design, revise code,

review and revise specification, revise design, revise code,

test system, revise code, ...

A lot has been said about organizing software processes, but

this is not the course for that.

Which part is design?

Narrow definition of design.

September 16, 2019 18



Software Design Unit 0 Theodore Norvell

• Design is that bit between specification and implementa-

tion

Broad definition of design.

• Design is the whole process.

So what is this course about?

We will take the broad view for this course, but the emphasis

is on high-level design, including some specification.

• Requirements analysis deserves more attention than we

can give it in this course.

• Instead we will work well known problems, so require-

menst analysis shouldn’t be crucial.

• You already know how to implement and test — I hope.

So why implement? Is the campus strewn with bridges

designed by civil students?

• Because the test of a H-L software design is its imple-

mentability.

• In particular the cost of a software design is in its

implementation.

• Because the high-level design always changes as we

implement.

• You can always learn more about implementation and

testing.

• As Reeves says, the source code is (part of) the design.

September 16, 2019 19


