
1

A Quick Survey of Some
Other Patterns

From Gamma et al.

© 2003--2009 T. S. Norvell Memorial University Slide set 11. Slide 2

Other patterns

  Gamma et al. define 23 O.O. design patterns
and other practitioners have identified dozens
more.

  The following selection outlines some of the
ones, not covered earlier, I’ve found most
useful. All are in Gamma et al.

© 2003--2009 T. S. Norvell Memorial University Slide set 11. Slide 3

Abstract Factory (Creational)

  Use factory methods to create a family of
related objects.
  E.g. In java.awt a factory object creates a set of

widgets that work together (scrollbars, windows,
menus)

© 2003--2009 T. S. Norvell Memorial University Slide set 11. Slide 4

Singleton (Creational)

  Ensure that only one instance of a class is
created
class Quangle {
private static Quangle singleton = null ;
// Constructor is private
private Quangle() { … } ;
public static Quangle getInstance() {
if(singleton==null) singleton = new Quangle() ;
return singleton ; }

… }

  Use with caution. Forcing client code to call static
methods prevents reuse with subclass.

© 2003--2009 T. S. Norvell Memorial University Slide set 11. Slide 5

Adapter (Structural)

(aka Wrapper)
  Use a class to adapt another class to

conform to an expected interface.
  Whereas the Proxy pat. adds functionality while

keeping the same interface, the Adapter pat.
changes the interface while leaving the same
functionality.

© 2003--2009 T. S. Norvell Memorial University Slide set 11. Slide 6

Façade (Structural)

  Provide a single interface to a set of objects.
  E.g. In TurtleTalk a single class provides

interfaces to the compiler, the interpreter, and the
maze (i.e. all aspects of the model).

  This simplifies the clients by reducing the number
of classes they are directly coupled to and the
number of objects they need to interact with.

© 2003--2009 T. S. Norvell Memorial University Slide set 11. Slide 7

Iterator (Behavioural)

  Give sequential access to the items of a
collection without exposing its representation.
  Allows generic algorithms to operate on a variety

of collections (sets, lists, maps, etc)
  java.util.Iterator
public boolean hasNext()
public Object next() ; // Mutator

  Issues abound when you consider insertions and
deletions from the underlying data structure.

© 2003--2009 T. S. Norvell Memorial University Slide set 11. Slide 8

Mediator (Behavioural)

  Use an object to mediate all interaction
between two or more other objects.
  The mediator class calls on the other classes so

that neither has to call (and hence depend on) the
other

  E.g. In TM a class called TMBigApplet mediates
communication between model side and view side
(each of which is represented by a façade object)

© 2003--2009 T. S. Norvell Memorial University Slide set 11. Slide 9

Template Method (Behavioural)
  Vary details of algorithm by filling in abstract

methods.
abstract class AbstractParent {

…
public void templateMethod() {

part of algorithm
hookMethod() // “down call”
another part of algorithm }

protected abstract void hookMethod() ; }
… }

class Child1 extends AbstactParent {
protected void hookMethod() { implementation 1 } }

