
1

A Quick Survey of Some
Other Patterns

From Gamma et al.

© 2003--2009 T. S. Norvell Memorial University Slide set 11. Slide 2

Other patterns

  Gamma et al. define 23 O.O. design patterns
and other practitioners have identified dozens
more.

  The following selection outlines some of the
ones, not covered earlier, I’ve found most
useful. All are in Gamma et al.

© 2003--2009 T. S. Norvell Memorial University Slide set 11. Slide 3

Abstract Factory (Creational)

  Use factory methods to create a family of
related objects.
  E.g. In java.awt a factory object creates a set of

widgets that work together (scrollbars, windows,
menus)

© 2003--2009 T. S. Norvell Memorial University Slide set 11. Slide 4

Singleton (Creational)

  Ensure that only one instance of a class is
created
class Quangle {
private static Quangle singleton = null ;
// Constructor is private
private Quangle() { … } ;
public static Quangle getInstance() {
if(singleton==null) singleton = new Quangle() ;
return singleton ; }

… }

  Use with caution. Forcing client code to call static
methods prevents reuse with subclass.

© 2003--2009 T. S. Norvell Memorial University Slide set 11. Slide 5

Adapter (Structural)

(aka Wrapper)
  Use a class to adapt another class to

conform to an expected interface.
  Whereas the Proxy pat. adds functionality while

keeping the same interface, the Adapter pat.
changes the interface while leaving the same
functionality.

© 2003--2009 T. S. Norvell Memorial University Slide set 11. Slide 6

Façade (Structural)

  Provide a single interface to a set of objects.
  E.g. In TurtleTalk a single class provides

interfaces to the compiler, the interpreter, and the
maze (i.e. all aspects of the model).

  This simplifies the clients by reducing the number
of classes they are directly coupled to and the
number of objects they need to interact with.

© 2003--2009 T. S. Norvell Memorial University Slide set 11. Slide 7

Iterator (Behavioural)

  Give sequential access to the items of a
collection without exposing its representation.
  Allows generic algorithms to operate on a variety

of collections (sets, lists, maps, etc)
  java.util.Iterator
public boolean hasNext()
public Object next() ; // Mutator

  Issues abound when you consider insertions and
deletions from the underlying data structure.

© 2003--2009 T. S. Norvell Memorial University Slide set 11. Slide 8

Mediator (Behavioural)

  Use an object to mediate all interaction
between two or more other objects.
  The mediator class calls on the other classes so

that neither has to call (and hence depend on) the
other

  E.g. In TM a class called TMBigApplet mediates
communication between model side and view side
(each of which is represented by a façade object)

© 2003--2009 T. S. Norvell Memorial University Slide set 11. Slide 9

Template Method (Behavioural)
  Vary details of algorithm by filling in abstract

methods.
abstract class AbstractParent {

…
public void templateMethod() {

part of algorithm
hookMethod() // “down call”
another part of algorithm }

protected abstract void hookMethod() ; }
… }

class Child1 extends AbstactParent {
protected void hookMethod() { implementation 1 } }

