
1

Introduction to UML

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 2

UML

  UML is a visual modelling Language
  visual --- UML documents are a diagrams.
  modelling --- UML is for describing systems
  systems --- may be software systems or

domains (e.g. business systems), etc.
  It is semi-formal

  The UML definition tries to give a reasonably well
defined meaning to each construct.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 3

Classes and Class Diagrams

  Classes
  Fields and Operations
  Association
  Composition
  Generalization
  Interfaces and Abstract Classes

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 4

Classes

  Classes are specifications for objects
  Consist of (in the main)

  A name
  A set of attributes (aka fields)
  A set of operations

  Constructors: initialize the object state
  Accessors: report on the object state
  Mutators: alter the object state
  Destructors: clean up

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 5

Java representation of a class

class Student {
private long studNum ;
private String name ;
public Student(long sn, String nm) {

studNum = sn ; name = nm ; }

public String getName() { return name ; }
public long getNumber() { return studNum ;}

}

Name
Attributes

Operations

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 6

UML Representation of a class

Note: UML model may contain more info.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 7

Classes in UML

UML can be used for many purposes.
  In software design UML classes usually

correspond to classes in the code.
  But in domain analysis UML classes are

typically classes of real objects (e.g. real
students) rather than their software
representations.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 8

Usage of (software) classes

A class C can be used in 3 ways:
  Instantiation. You can use C to create new

objects.
  Example: new C()

  Extension. You can use C as the basis for
implementing other classes
  Example: class D extends C { … }

  Type. You can use C as a type
  Examples: C func(C p) { C q ;… }

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 9

Relationships Between Classes

  Association
  Aggregation
  Composition
  Dependence
  Generalization

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 10

Association Relationships

  Two classes are “associated” if each instance of one
may be associated with instances of the other.

  Associations are typically named.
  Associations are often implemented with pointers

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 11

Multiplicity Constraints

  Each Department is
associated with one
DepartmentHead and at
least one
DepartmentMember

  Each DepartmentHead
and DepartmentMember
is associated with one
Department

  No constraint means
multiplicity is unspecified

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 12

Role names

  Role names may be
given to the ends of an
association

  Only name roles when
it adds clarity

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 13

Navagability

  An arrow-head
indicates the direction
of navigability.

  E.g. Given a student
object, we can easily
find all Sections the
student is taking.

  No arrow-head: means
navigability in both
directions.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 14

Implementing navigable associations

Usually implemented with fields
 class Student {

private List<Section> sections ; … }

class Department {
private DepartmentHead deptHead ; … }

*

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 15

Implementing associations indirectly

  An association between objects might also
be stored outside of the objects
class Department {
private static

Map<Department,DepartmentHead> heads =
new<Department,DepartmentHead> HashMap();

DepartmentHead getHead() {
return heads.get(this) ; }

…

}

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 16

Aggregation

  Aggregation is a special
case of association.

  It is used when there is
a “whole-part”
relationship between
objects.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 17

Composition
  Composition is a special case of aggregation.
  Composition is appropriate when

  each part is a part of one whole
  the lifetime of the whole and the part are the

same.
  Graphically it uses a solid diamond

Student
Record

Student
Number

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 18

Recursive associations

  Associations may relate
an class to itself.

  The objects of the class
may or may not be
associated with
themselves.

  (For example, the left and right
children of a node would not
be that node. But a
GraphNode object might be its
own neighbour.)

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 19

Associations vs. attributes

  Both are usually implemented by fields (a.k.a. data
members).

  Use attributes for primitive types such as integer,
boolean, char, etc, and pointers to such.

  Use association (or aggregation) for pointers that
point to classes or interfaces.

  Use composition for data members that are classes.
(Not possible in Java).

  Use composition if the life time of the part is identical
to or contained in the lifetime of the whole.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 20

Degrees of belonging

  Attribute. Lifetime of attribute equals life time
of object that contains it.

  Composition. Lifetime of the part equals or is,
by design, nested within the lifetime of the
whole.

  Aggregation. Whole-part relationship, but
parts could be parts of several wholes, or
could migrate from one container to another.

  Association. Relationship is not part/whole.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 21

Generalization/Specialization
  Represents “is-a-kind-

of’’ relationships.
  E.g. every Chimp is

also an Ape.
  In OO implementation it

represents class
inheritance: Inheritance
of interface and of
implementation too.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 22

Interfaces

  Interfaces are classes
that have no associated
implementation.

  I.e.
  no attributes,
  no implementations for

any operations
  In UML use either

stereotype to indicate
an interface, or
“lollypop”

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 23

Realization

  Classes “specialize”
classes, but “realize”
interfaces. Similar
concept, similar
notation. (Note dashes)

  Choice of notations.
Diagrams at right are
equivalent.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 24

Generalization/Specialization and
Realization in Java
UML terminology Java terminology

C specializes D C extends D

C realizes D C implements D

class TestCharInput
 extends TestInput
 implements CharSource
{
 …
}

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 25

The Substitution Principle

  Suppose class C specializes class D
or class C realizes interface D
  Then any properties that should hold true of

all D objects should hold true of all C objects.
  Question:

  Should Rectangle specialize Square, or
  should Square specialize Rectangle, or
  neither should specialize the other?

  More on this later.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 26

Abstract operations

  An operation O is “abstract” in class C if it does not
have an implementation in class C.

  The implementation of the operation will be filled in
in specializations of C.

  abstract class TreeNode {
abstract int height() ; … }

class Leaf extends TreeNode {
int height() { return 1 ; } … }

class Branch extends TreeNode {
 TreeNode r, l ;
int height(){return Math.max(l.height(),

 r.height) ; } … }

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 27

Abstract in VP

  In VP classes are made
abstract with a
checkbox in the
specification.

  Likewise for operations
(class must be abstract
first).

  Italics or slanted text
indicate abstractness

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 28

Abstract and Concrete classes

  Classes that have abstract operations can not be
instantiated --- since this would mean that there is
no implementation associated with one of the
object’s operations

  Classes that can not be instantiated are called
abstract classes.

  Classes that can be are called concrete
  In UML use the <<abstract>> stereotype for abstract

classes and operations.
  Alternatively: The name of the abstract class or operation is

in italics.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 29

Dependence

A class C depends on class D if the
implementation or interface of C mentions D.
  C extends D or implements D
  C has a field of type D or pointer to D or array of D
  C creates a new D
  C has an operation that has a

  parameter
  local variable
  return type

of type D of a pointer to D or an array of D etc.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 30

Dependence

  Often dependence is implicit in generalization or
association relationships.

  When it is not, you may want to indicate
dependence explicitly.

  Stereotypes and documentation can add detail.

© 2003--2009 T. S. Norvell Memorial University Slide set 2. Slide 31

Dependence

  Dependence relations are important to note
because unneeded dependence makes
components
  harder to reuse in another context
  harder to isolate for testing
  harder to write/understand/maintain, as the

depended on classes must also be understood
  It is better to depend on an interface than on

a class.
  More on this later.

32

More on Associations

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 33

Association Classes

  Sometimes associations need attributes themselves.
  An employment relationship between an employer and

employee might have a employee number associated
with it.

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 34

set, bag, ordered, and sequence

  In math a
  A set is an unordered collection without duplication
  A bag is an unordered collection with possible duplication
  An ordered set is an ordered collection without duplication
  A sequence is an ordered collection with possible duplication

duplication order
set

bag √
ordered set √

sequence √ √

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 35

set, bag, ordered, and sequence

  By default, pairs are associated only once.
  Thus

means that, while each employer can have
many employees, each employee has
only one employment link with each
employer.

  Thus each employee can only have one
employee number.

  Each employer has a set of employees.
We can emphasise this point with an
annotation:

{set}

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 36

set, bag, ordered, and sequence

  Now consider this association

  It implies (incorrectly) that a student can only have
one enrolment per university!.

  (Remember the {set} is the default.)

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 37

set, bag, ordered, and sequence

  We need a special annotation to say that the same
(University/Student) pair can have multiple
Enrolment links

{bag}

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 38

set, bag, ordered, and sequence

  Consider a OS’s representation of a display screen. It
has a set of windows, but furthermore the set is
ordered.

  Use the ordered annotation for ordered sets

{ordered}

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 39

set, bag, ordered, and sequence

  Now consider a Stack of StackItems. The diagram

{bag}

correctly shows that the same StackItem object may
appear on the same stack more than once.

  But we may want to further indicate that the items
on each stack are ordered

{sequence}

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 40

set, bag, ordered, and sequence

  Unfortunately the version of Rose we currently
have does not support these annotations. As a
work-around, use UML notes.

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 41

Qualified Associations

  An association may require other information. For
example, given a StudentDataBase, one can find an
associated Student “given a student number’’

  Could be implemented by an array or a some kind of
map structure (search tree or hash table).

© 2003 T. S. Norvell Engineering 5895 Memorial University Slide set 2. Slide 42

n-ary Associations

  Normally associations are binary, but we can have
n-ary associations for n > 2.

  Multiplicities are given assuming all other objects are
fixed.

  Example: In a genogram application we might have

