
1

Classes and Responsibilities

© 2003--2009 T. S. Norvell Memorial University Slide set 5. Slide 2

Responsibility / Providing a service

Deciding on class Responsibility
!  Each class can be seen as providing a

service to it clients in the system.
!  This service is its “responsibility”
!  Other classes (client code) access the class’s

service via its public interface.

© 2003--2009 T. S. Norvell Memorial University Slide set 5. Slide 3

Consider some human examples

!  A baker has the responsibility of baking a
cake

!  An appliance repairer has the responsibility
to fix broken ovens

© 2003--2009 T. S. Norvell Memorial University Slide set 5. Slide 4

Information hiding / Keeping a secret

!  By parcelling out responsibilities we reduce
the information burden on people.
"  Bakers don’t need to know how to fix ovens
"  Repairers don’t need to know how to make cakes

!  Thus each responsibility is associated with a
“secret” which is a set of information that the
rest of us don’t need to know to get our jobs
done.

© 2003--2009 T. S. Norvell Memorial University Slide set 5. Slide 5

Information hiding / Keeping a secret

!  Behind its service, each class hides some
information that its clients do not need to get
their job done.

!  The information hidden might reflect either
"  An internal design decision or
"  An aspect of the system’s specification

© 2003--2009 T. S. Norvell Memorial University Slide set 5. Slide 6

Information hiding / Keeping a secret

!  Specifications impose a number of
constraints.

!  Design of a system involves a number of
smaller design decisions.

!  To keep the design simple we try to limit the
impact of each constraint or design decision
to 1 class (or a small number of classes)

!  Each class hides the information about a
constraint or design decision.

© 2003--2009 T. S. Norvell Memorial University Slide set 5. Slide 7

Good design

Good design will
"  Keep the responsibilities of each class few,

simple, and simple to access
"  Break complex responsibilities down hierarchically

so that no one class is too complicated
"  Hide the effect of each design decision and

requirement in 1 class --or as few classes as
possible

"  With priority on design decisions and
requirements that are likely to change or differ
when the component is reused

© 2003--2009 T. S. Norvell Memorial University Slide set 5. Slide 8

Example: A Chess Playing Robot

Needs classes or packages to do the following:
!  Executive: Manage the flow of the game.
!  Input: Sense moves made by the human
!  Output: Move the pieces on the physical board.
!  Board: Internal representation of board states.
!  Rules: Knows for each board state what the legal

moves are.
!  Strategy: Simulates and evaluates different courses

of action.

© 2003--2009 T. S. Norvell Memorial University Slide set 5. Slide 9

Kinds of classes

!  Information storage
"  Service: An abstract interface to the information
"  Secret: The data structures used.
"  Examples: Classes representing sequences, sets, finite

functions, chess boards, trees, graphs, diagrams, UML
models.

!  Algorithmic
"  Service: Performing some manipulation of data.
"  Secret: The algorithm used.
"  Examples: Sort a sequence, find shortest path in a graph,

determine best move in a chess game, plot best course
through a room.

© 2003--2009 T. S. Norvell Memorial University Slide set 5. Slide 10

Kinds of Classes (continued)

!  Device interface
"  Service: Provide access to an external device
"  Secret: The nature of the device and the protocols for using

it.
"  Examples: Sensing the input from a touch sensitive chess

board, moving a robotic arm to a specific location,
outputting to a console (or console window)

!  OS interface:
"  Service: Services provided via the OS.
"  Secret: The OS being used and the means to communicate

with it.
"  Examples: Interacting with the file system or window

system or process system.

© 2003--2009 T. S. Norvell Memorial University Slide set 5. Slide 11

Kinds of classes (cont. again)

!  Formatting and Parsing Classes
"  Service: Input and output of data in specific formats
"  Secret: The format of files
"  Examples: Input and output filters in word-processors.

Configuration file reading and writing.

!  Adaptation Classes
"  Service: Representing other classes in a way conforming to

a given interface.
"  Secret: Which classes are being represented.
"  Examples: Event listener classes (e.g. ActionListeners in

Java). Iterator classes (e.g. Enumerations in Java).

© 2003--2009 T. S. Norvell Memorial University Slide set 5. Slide 12

Kinds of classes (cont. yet again)

!  Structural classes
"  Service: Providing a single interface to a number of objects,
"  Secret: The details of those objects
"  Example: Façade classes (classes). Container classes in

Java’s AWT.

!  Creators
"  Service: Creating objects needed by other classes.
"  Secret: The method of creation and the concrete class’s of

the objects.
"  Example: Factory classes (later)

© 2003--2009 T. S. Norvell Memorial University Slide set 5. Slide 13

Kinds of classes (one last one)

!  Arbitrary facts
"  Examples: Numerical constants, rules for financial

calculations, rules of games, rules for formatting
dates and monetary amounts, strings
corresponding to messages, names of provinces
and countries, rules for checking validity (e.g. of
postal codes, credit card number), etc.

"  These “facts’’ tend to change as software is used
in other countries and languages
(internationalization).

© 2003--2009 T. S. Norvell Memorial University Slide set 5. Slide 14

Evaluating a design

!  We can consider the impact of each kind of
likely change on the design.
"  No recoding: Change is confined to constants or

configuration files.
"  Class level: One class needs to change.
"  Package (or cluster level): Changes are confined

to a small number of closely related classes.
"  Global: Public interfaces of packages must

change. Changes span multiple packages.

© 2003--2009 T. S. Norvell Memorial University Slide set 5. Slide 15

Evaluating the Chess Example

!  Changes to input or output method
"  E.g. Video / mouse rather than robotic
"  Confined to Input and Output classes

!  Changes to strategy
"  Confined to Strategy classes

!  Changes to rules
"  Unlikely, but would affect mainly the Rules classes

!  Changes to representation
"  Affect only the Board classes

© 2003--2009 T. S. Norvell Memorial University Slide set 5. Slide 16

Families of products

!  By interchanging a set of classes with other classes
that implement the same interface, we obtain a
family of products.

!  Examples:
"  Port to new OS: Change only OS interface classes.

!  Porting the Java AWT requires implementation of certain
“peer” classes representing buttons, windows, etc.

"  Port to new device: Change only device interface class.
"  Teaching Machine, Interpret new language: Change only

the implementation of the “Language” interface.

© 2003--2009 T. S. Norvell Memorial University Slide set 5. Slide 17

Documenting Classes

!  Short description
!  Service(s) provided
!  Secret(s)
!  Interface

"  In Java, simply document each public method
separately.

!  Collaborators: What classes does this class
depend on and why. (In UML use a class
diagram.)

© 2003--2009 T. S. Norvell Memorial University Slide set 5. Slide 18

Documenting Classes (JavaDoc)

/** Represent the state of a chess board.
<p> Stores the location of the pieces on a

board and other information on the state of
the game.

@author Theodore Norvell */
public class ChessBoard {

/** Construct a board with all pieces in initial
positions. */

public ChessBoard() { … }

© 2003--2009 T. S. Norvell Memorial University Slide set 5. Slide 19

Keeping classes isolated

A class is isolated if it depends on few other
classes.

By isolating components (packages and
classes)

!  Changes can be restricted to fewer classes
!  Components are more reusable
!  Components can be tested in isolation

More to read

!  David Parnas: On The Criteria To Be Used In
Decomposing Systems Into Modules, Comm.
ACM, Dec., 1972.
"  https://www.cs.umd.edu/class/spring2003/

cmsc838p/Design/criteria.pdf

© 2013--2009 T. S. Norvell Memorial University Slide set 5. Slide 20

