
1

State Pattern

From Gamma et al.

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 2

Finite State Machines

  A finite state machine (or finite state
automaton) is an object that behaves in a
finite set of distinct ways based on its past
input and on its own choices.

  We can often model the behaviour of things
using finite state machines.

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 3

A Car Stereo

  You need to design the software for a car
stereo.

  The stereo has 4 push buttons.
  Mode. Changes mode between “FM radio mode”

and CD player mode.
  Play. Turns the radio or CD player on or off.
  Up. Moves to next track or scans to higher radio

station.
  Down. Moves to previous track or scans to lower

radio station.

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 4

In a diagram we have

  The “CD On” state is only entered if there is a CD in
the player

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 5

The Controller Class

  We need to implement a controller class that will
interpret button clicks coming from the console and
turn them into commands to the StereoDriver

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 6

First Cut

  Our First approach is actually a big
improvement over any ad hoc approach.

  We represent each state with a unique
integer. (Could also use an Enum type.)

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 7

First Cut

public class StereoController {
private static final int FMOFF = 0, FMON = 1, CDON

= 2, CDOFF = 3 ;
private int currentState = FMOFF ;
…

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 8

First Cut

public void play() {
switch(currentState) {
case FMOFF: {

radio.turnOn() ;
currentState = FMON ;
break ; }

case FMON : {
radio.turnOff() ;
currentState = FMOFF ;
break ; }

case CDOFF: {
if(cd.isCDInserted()) {

cd.turnOn() ;
current = CDON ; }

break ; }
case CDON : {

cd.turnOff() ;
currentState = CDOFF ;
break ; } }

default: assert false ;
}
And so on for all other input

events.

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 9

Reflection

  At this point we have an approach that is at
least organized as opposed to ad hoc

  Unlike our state diagram, it is organized by
events.
  Information about events is concentrated.
  Information about states is dispersed among

many methods (but still encapsulated in the class)

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 10

Resilience to Change

  A state machine has several axes of change
  New states may be added or removed
  New events may be added or removed
  New transitions may be added or removed

  Time for next year’s model.
  There is a new mode. “External input”. So that

people can plug in their MP3 player.
  The current design can be adapted, but we must

make changes in many places.

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 11

Is there another organization?

  To better deal with changes to the set of
states, we will reorganize the class to
concentrate information on each state in one
place

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 12

The reorganized class

  Delegates events to a currentState object.
public class StereoController {

static final State fmOffState = new FMOffState() ;
static final State fmOnState = new FMOnState() ;
static final State cdOffState = new CDOffState() ;
static final State cdOnState = new CDOnState() ;
private State currentState = fmOffState ;

public void play() { currentState.play(this) ; }
public void mode() { currentState.mode(this) ; }
public void up() { currentState.up(this) ; }
public void down() { currentState.down(this) ; }
…

}

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 13

The reorganized class

abstract class State {
void play(StereoController c) {}
void mode (StereoController c) {}
void up (StereoController c) {}
void down (StereoController c) {}

}
  This class provides a default behaviour for each event,

which is to ignore the event.
  As an alternative, we might choose not to provide any

body for these methods. This forces the programmer to
provide an implementation in any concrete subclass.

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 14

The reorganized class
class FMOffState extends State {

void play(StereoController c) {
c.turnRadioOn() ;
c.setCurrentState(c.fmOnState) ; }

void mode(StereoController c) {
c.setDisplayModelToCD() ;
if(c.isCDInserted()) {

c.turnCDOn() ;
c.setCurrentState(c.cdOnState) ; }

else {
c.setCurrentState(c.cdOffState) ; } }

}

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 15

In a diagram

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 16

Now add the new state

  At this point we can add a new state. This
minimally impacts the other states.

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 17

The State Pattern

  Intent: “Allow on object to alter its behaviour
when its internal state changes. The object
will appear to change its class.” [Gamma 94]

  Applicability: Use when
  “An objects behaviour depends on its state and it

must change its behaviour depending on state”

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 18

Structure

© 2003-2009 T. S. Norvell Memorial University Slide set 9. Slide 19

Consequences
  + State specific behaviour is localized

  Makes it easy to add and remove states
  Allows states to be arranged in an inheritance hierarchy to share

common behaviour
  + Avoids conditional branching

  Thus simplifying the logic
  + Makes state model explicit

  If state information is spread over multiple variables, the state
model is obscured. Consider

deviceEnum currentDevice ; // FM or CD
boolean on ; // Is the current device “on”

  The meaning of “on” depends on the value of “currentDevice ”
  - Responsibility is spread over more classes.

  The context will typically have to expose its internal design to the
state classes.

  For simple problems, the State pattern may be over-design.

