
1

Design by Contract

© 2009 T. S. Norvell Memorial University Specification of methods Slide 2

Contracts

  Alice (client) hires Bob (server) to fix her car.
  They make a contract.

  Alice agrees to give Bob $100 in advance
  Bob agrees that when he is done, the car will be in

good working order

© 2009 T. S. Norvell Memorial University Specification of methods Slide 3

Contracts

Obligation Benefit

Alice
(client)

Must pay $100 Has working car

Bob
(server)

Must fix car Has $100 to buy
materials

© 2009 T. S. Norvell Memorial University Specification of methods Slide 4

Contracts in programming

  Consider a method tan to compute the tangent of an
angle between 0 and 89 degrees.

  Alice will write the client.
  Bob will implement tan.
  Contract

  Syntactic signature: double tan(double x)
  Alice agrees to send, as argument, a value between 0 and

89.
  Bob agrees that the result will be equal to the tangent to at

least three decimal places.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 5

Contracts in programming
Obligation Benefit

Alice
(client)

Must supply an
argument in
range [0,89]

Result equals
the tan of the
argument to 3
decimal places

Bob
(implementer)

Must ensure the
result equals
the tan of the
argument to 3
decimal places

Argument in
range [0,89]

© 2009 T. S. Norvell Memorial University Specification of methods Slide 6

Contracts in programming

From the point of view of the implementer:
  the clients obligation is what is required.
  the implementer’s obligation is what the

implementation ensures.
  We document procedures as follows

/**
* requires boolean expression
* ensures boolean expression
*/

“requires clause” -- also called
“precondition”

“ensures clause” – also called
“postcondition”

© 2009 T. S. Norvell Memorial University Specification of methods Slide 7

Contracts in programming

  For example:
class DegMath {

/** requires 0 <= x && x <= 89
* ensures result == tan(x) to three decimal places,
* where tan is the mathematical tangent function in
* terms of degrees. */
static double tan(double x)

}

We use “result” to represent the
result of an invocation.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 8

If the client breaks the contract

  Given this contract, the client can not make
any assumptions about what a call such as

DegMath.tan(90.0) or DegMath.tan(-1.0)

 might do.
  The client is obligated to ensure that the

expression in the requires clause is true at
the start of the invocation.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 9

If the client respects the contract

  For the implementation to be correct, the
implementer must ensure that

DegMath.tan(25)

 equals the mathematically correct value to 3
decimal places.

  The implementer is obligated to ensure that
the “postcondition” is true, but only in those
cases where the “precondition” is true.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 10

Final values

  The requires clause refers to the values of
expressions at the time start of the invocation.

  In the ensures clause, we must often refer to both
the initial values of expressions and the final values
of expressions.

  We use the convention that
expression'

 means the value of the expression at the end of the
invocation. Often the expression is a variable.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 11

Final values

  Example
class Point {

double x, y ;

/** requires true
* modifies x, y
* ensures x’==0.0 && y’==0.0
Point() { … }

/** requires true
* modifies x, y
* ensures x’ == x + deltaX && y’ == y + deltaY
*/
void move(double deltaX, double deltaY) {…}
…

}

© 2009 T. S. Norvell Memorial University Specification of methods Slide 12

Omitting the requires clause

  In this example, there is no obligation on the caller
beyond the syntactic signature. We can omit the
requires clauses

class Point {
double x, y ;

/** modifies x, y
* ensures x’==0.0 && y’==0.0
Point() { … }

/** modifies x, y
* ensures x’ == x + deltaX && y’ == y + deltaY
*/
void move(double deltaX, double deltaY) {…}
…

}

© 2009 T. S. Norvell Memorial University Specification of methods Slide 13

Framing

  The modifies clause is used to indicate which
variables may be changed by a method.

class Point {
double x, y ;

/** modifies x
* ensures x’ == x + deltaX
*/
void moveLeft(double deltaX) {…}
…

}

© 2009 T. S. Norvell Memorial University Specification of methods Slide 14

Example

  Partitioning a list
/** requires a != null and a.length > 0
* modifies a[*]
* ensures a[*]’ is a permutation of a[*] and
* 0 <= result and result < a.length and
* (for all i in {0,1,…,a.length-1}
* (i < result implies a[i]’ <= a[result]’) and
* (i > result implies a[i]’ >= a[result]’))
**/
int partition(double[] a)

Further reading

  The paper that introduced the term “design
by contract” was

Meyer, Bertrand. "Applying 'design by contract'." Computer
25, no. 10 (1992): 40-51.

  The ideas date back to the late 60s and 70s.
For example, the Euclid programming
language, designed in 1977, had support for
pre- and postconditions.

  Meyer’s paper was important for applying the
ideas to object-oriented programming.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 15

