
1

Design by contract
and defensive programming

Defensive programming

  Defensive programming is a loosely defined
collection of techniques to reduce the risk of
failure at run time.

  One technique is “Making the software
behave in a predictable manner despite
unexpected inputs or user actions.” [0]

  Related: Making the software behave in a
predictable manner despite internal errors
(bugs).

© 2009 T. S. Norvell Memorial University Specification of methods Slide 2

Defensive programming

  Design by Contract is complementary to
defensive programming because
  With preconditions, it makes clear which inputs (to

methods) are unexpected.
  With postconditions, it makes it clear when an

internal bug has occurred.
  But it does not prescribe predictable behaviour in

the face or unexpected inputs and internal errors.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 3

Aside on Java’s assert statement

  Java’s assert statement provides some
support for defensive programming.

assert i > 0 ;
 means
 {if(!(i>0)) throw new AssertionError() ; }
 if the program is run with assertions enabled.
  The VM parameter “–ea” will enable

assertions.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 4

Aside on Java’s assert statement

  However when a Java program is run without
assertions enabled, assert statements have
no effect.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 5

© 2009 T. S. Norvell Memorial University Specification of methods Slide 6

Assert statements and defensive
programming
  Consider a search routine

/** requires a != null
* ensures ((there is an i such that a[i]==x) implies a[result]==x)
* and ((there is no i such that a[i]==x) implies result==a.length)
*/
int search(double x, double[] a)

© 2009 T. S. Norvell Memorial University Specification of methods Slide 7

Assert statements and defensive
programming
  Bob implemented it like this

/** requires a != null
* ensures ((there is an i such that a[i]==x) implies a[result]==x)
* and ((there is no i such that a[i]==x) implies result==a.length)
*/
int search(double x, double[] a) {

int k = 0 ;
while(k < a.length && a[k] != x) ++k ;
return k ;

}

© 2009 T. S. Norvell Memorial University Specification of methods Slide 8

Assert statements and defensive
programming
  Chris implemented it like this

/** requires a != null
* ensures ((there is an i such that a[i]==x) implies a[result]==x)
* and ((there is no i such that a[i]==x) implies result==a.length)
*/
int search(double x, double[] a) {

assert a != null ;
int k = 0 ;
while(k < a.length && a[k] != x) ++k ;
assert k == a.length || a[k] == x ;
return k ;

}

Throws an exception if
condition is false and
assertion checking is
enabled

© 2009 T. S. Norvell Memorial University Specification of methods Slide 9

Assert statements and defensive
programming
  Dan implemented it like this

/** requires a != null
* ensures ((there is an i such that a[i]==x) implies a[result]==x)
* and ((there is no i such that a[i]==x) implies result==a.length)
*/
int search(double x, double[] a) {

Assert.check(a != null , “’search’ precondition failed”);
int k = 0 ;
while(k < a.length && a[k] != x) ++k ;
Assert.check(k == a.length || a[k] == x , “’search’ postcondition failed”) ;
return k ;

}

Assert statements and defensive
programming
  Dan’s Assert class looks like this

class Assert {
static void check(boolean cond, String message) {
 if(! cond) throw new AssertionError(message) ; }

}

© 2009 T. S. Norvell Memorial University Specification of methods Slide 10

© 2009 T. S. Norvell Memorial University Specification of methods Slide 11

Assert statements and defensive
programming
  Eve implemented it like this

/** requires a != null
* ensures ((there is an i such that a[i]==x) implies a[result]==x)
* and ((there is no i such that a[i]==x) implies result==a.length)
*/
int search(double x, double[] a) {

if(a == null) return 0 ;
int k = 0 ;
while(k < a.length && a[k] != x) ++k ;
return k ;

}

© 2009 T. S. Norvell Memorial University Specification of methods Slide 12

Assert statements and defensive
programming
  Bob, Chris, Dan and Eve all wrote code that

meets the contract.
  Bob was not practicing defensive programming
  Chris and Dan were practicing defensive

programming.
  Eve was practicing poor programming! If you

take the time to check a precondition, it is better
to make someone aware of the failures.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 13

Fail-fast programming

  Defensive checks (such as assertions) are analogous to
fuses in a power circuit.

  They cause erroneous systems to “fail fast”. I.e. to fail
before further damage is done.

  They also help pinpoint the root cause of a fault.
  A safety critical system should also “fail safe”. The

combination of fail fast, fail safe, fault tolerance (recovery
from failure), and failure reporting is the best.

  Eve’s solution masks the earlier error and is a “garbage
in – garbage out” solution.

  (Further reading http://martinfowler.com/ieeeSoftware/failFast.pdf)

© 2009 T. S. Norvell Memorial University Specification of methods Slide 14

Partial vs. Full checks

  Note that Chris and Dan did not check the
postcondition, rather they checked an implication
of the postcondition. (A “partial check”.)

  Whether it is worth the computational and design
costs to check the full pre- or postcondition is a
function of many inputs
  The confidence in the code.
  The cost of error.
  The cost of a partial check vs. a full check
  The sufficiency of a partial check vs. a full check.

© 2009 T. S. Norvell Memorial University Specification of methods Slide 15

Defensive programming and contracts

  Defensive programming is complementary to the
use of contracts.

  A contract obviously guides the writing of run-time
defensive checks.

  A defensive check helps ensure that the contract is
being respected.

  Systems such as JML, Spec#, and .NET Contracts
can automatically turn contracts into run-time
defensive checks.

  Further reading
  http://www.eecs.ucf.edu/~leavens/JML/
  http://research.microsoft.com/en-us/projects/specsharp/
  http://research.microsoft.com/en-us/projects/contracts/default.aspx

© 2009 T. S. Norvell Memorial University Specification of methods Slide 16

Defensive programming and contracts

  Of course if contracts can be proved to be
respected, there is no need for defensive
checks.

  Systems such as JML, Spec#, and .NET
Contracts can automatically verify that
contracts are respected.

  Further reading
  http://www.eecs.ucf.edu/~leavens/JML/
  http://research.microsoft.com/en-us/projects/specsharp/
  http://research.microsoft.com/en-us/projects/contracts/

default.aspx

References

  [0] Wikipedia, “Defensive programming”
accessed January 2103

© 2009 T. S. Norvell Memorial University Specification of methods Slide 17

