
1

Contracts for objects -- 0

Clear Box Specification

© 2009 T. S. Norvell Memorial University Specification of objects – clear box Slide 2

Contracts for classes

!  Now we extend the idea of contracts to
classes.

!  As an example, we consider a class for
representing rational numbers.

!  We use a simple data structure:

© 2009 T. S. Norvell Memorial University Specification of objects – clear box Slide 3

Rational

class Rational {
private double numerator ;
private double denominator ;

// requires d != 0.0
// ensures denominator’ != 0.0
public Rational(double n, double d) {

numerator = n ; denominator = d ; }

© 2009 T. S. Norvell Memorial University Specification of objects – clear box Slide 4

Rational

// requires denominator != 0.0
// ensures result == numerator / denominator
public double toDouble() {

return numerator / denominator ; }

!  Does it make sense to require the client to ensure
that the denominator is not 0 before calling
toDouble?

!  We should not force the client to reason in terms of
the private fields of an object.

!  To do so is contrary to the principles of information
hiding and abstraction.

!  Objects are meant to represent things.
!  There are certain states of the objects that

are sensible and certain states that --while
representable by the fields– should not be
reachable. These states do not represent
things.

© 2009 T. S. Norvell Memorial University Specification of objects – clear box Slide 5

© 2009 T. S. Norvell Memorial University Specification of objects – clear box Slide 6

Invariants

!  It is the job of the implementer of a class (not
its clients) to ensure that the objects of the
class do not reach states that are not
sensible.

!  An object invariant is a description of the
states that of an object that are sensible.

!  We start again. This time we state the
invariant

© 2009 T. S. Norvell Memorial University Specification of objects – clear box Slide 7

Invariants

class Rational {
// invariant denominator != 0.0
protected double numerator ;
protected double denominator ;

// requires d != 0.0
public Rational(double n, double d) {

numerator = n ; denominator = d ; }
// ensures result == numerator / denominator
public double toDouble() {

return numerator / denominator ; }

© 2009 T. S. Norvell Memorial University Specification of objects – clear box Slide 8

Invariants

!  The client coder does not need to think about
the invariant.

!  The implementer may assume that the
invariant is true at the start of each method.

!  But the implementer must also ensure that
the each method and constructor of the class
establishes the invariant at its end.

!  Thus each method should preserve the
invariant.

© 2009 T. S. Norvell Memorial University Specification of objects – clear box Slide 9

Another example

!  As a second example, we use a dictionary
that creates and records an association
between strings and small integers.

!  We use a simple data structure:

size

hello riposte lunge game parry

capacity

© 2009 T. S. Norvell Memorial University
Specification of objects – clear box Slide

10

Data structure

class Dictionary {
public final static INIT_CAPACITY = 10 ;
protected int size = 0 ;
protected String[] a = new String[INIT_CAPACITY] ;

// modifies size, a
// ensures size’ == 0 and a’ != null
public Dictionary() { … }

// ensures result == size
public int getSize() { … }

// requires a != null
// ensures result == a.length
public int getCapacity() { … }

© 2009 T. S. Norvell Memorial University
Specification of objects – clear box Slide

11

getInt

// requires str != null
// and a != null and 0 <= size and size <= a.length
// and (for all i in {0,1,…,size-1}, a[i]!=null)
// and (for all i,j in {0,1,…,size-1}, a[i]==a[j] implies i==j)
// ensures
// if(there is an i in {0,1,…,size-1}, str.equals(a[i]))
// then 0 <= result and result < size
// and str.equals(a[result]))
// else result == -1
public int getInt(String str) { … }

© 2009 T. S. Norvell Memorial University
Specification of objects – clear box Slide

12

putString

// requires str != null and size < a.length
// and a != null and 0 <= size and size <= a.length
// and (for all i in {0,1,…,size-1}, a[i]!=null)
// and (for all i,j in {0,1,…,size-1}, a[i]==a[j] implies i==j)
// modifies a[size], size
// ensures 0 <= result and result <= size’
// and str.equals(a[result]) and (size’ in {size, size+1})
// and (for all i in {0,1,…,size-1}, a[i]’.equals(a[i])
// and a != null and 0 <= size’ and size’ <= a’.length’
// and (for all i in {0,1,…,size’-1}, a[i]’!=null)
// and (for all i,j in {0,1,…,size’-1}, a[i]’==a[j]’ implies i==j)
int putString(String str) { … }

© 2009 T. S. Norvell Memorial University
Specification of objects – clear box Slide

13

Invariants

!  Notice that certain facts about the fields are
required by almost all methods.

!  Thus these facts must be established by
each constructor and preserved by each
method

!  These facts essentially define what it means
for the state of the object to be sensible.

© 2009 T. S. Norvell Memorial University
Specification of objects – clear box Slide

14

Invariants
!  In this example, we require

"  That a points to an array:
!  a != null

"  That size is a valid index or equals the capacity:
!  0 <= size and size <= a.length

"  That the first size items of the array are not null:
!  (for all i in {0,1,…,size-1}, a[i]!=null)

"  That the first size items of a be unique:
!  (for all i,j in {0,1,…,size-1}, a[i]==a[j] implies i==j)

"  If any of these “facts” is false, then the data
structure is corrupt.

© 2009 T. S. Norvell Memorial University
Specification of objects – clear box Slide

15

Invariants

!  We call these facts the object invariant
(sometimes called class invariant)

!  The object invariant must be ensured by
each constructor and each method of the
class.

!  The invariant may thus be assumed at the
start of each method.

© 2009 T. S. Norvell Memorial University
Specification of objects – clear box Slide

16

Rewriting the class

!  Now we rewrite the Dictionary class, factoring
out the invariant.
class Dictionary {

public final static INIT_CAPACITY = 10 ;
protected int size = 0 ;
protected String[] a = new String[INIT_CAPACITY] ;
// invariant a != null
// invariant 0 <= size and size <= a.length
// invariant (for all i in {0,1,…,size-1}, a[i]!=null)
// invariant (for all i, j in {0,1,…,size-1}, a[i]==a[j] implies i==j)

© 2009 T. S. Norvell Memorial University
Specification of objects – clear box Slide

17

Rewriting the class

// modifies size, a
// ensures size == 0
public Dictionary() { … }

// ensures result == size
public int getSize() { … }

// ensures result == a.length
public int getCapacity() { … }

© 2009 T. S. Norvell Memorial University
Specification of objects – clear box Slide

18

Rewriting the class

// requires str != null
// ensures
// if(there is an i in {0,1,…,size-1}, str.equals(a[i]))
// then 0 <= result and result < size
// and str.equals(a[result]))
// else result == -1
public int getInt(String str) { … }

© 2009 T. S. Norvell Memorial University
Specification of objects – clear box Slide

19

Rewriting the class

// requires str != null and size < a.length
// modifies a[size], size
// ensures 0 <= result and result <= size’
// and str.equals(a[result])’ and (size’ in {size, size+1})
// and (for all i in {0,1,…,size-1}, a[i]’.equals(a[i])
int putString(String str) { … }

© 2009 T. S. Norvell Memorial University
Specification of objects – clear box Slide

20

Summary

!  Note that the precondition now contains only
things that the client actually has control
over.

Server

precondition postcondition

invariant

Client

Flow of obligations

© 2009 T. S. Norvell Memorial University
Specification of objects – clear box Slide

21

Invariants and defensive checks

!  We can typically write the invariant as a
method that is called at the end of each
constructor and mutator (method that
changes state). The check can be partial or
full.

!  To be extra careful, also call it at the start of
each method.

protected void invariant () {
 assert a != null ;
 assert 0 <= size && size <= a.length ; … }

© 2009 T. S. Norvell Memorial University
Specification of objects – clear box Slide

22

Invariants and callbacks

!  As mentioned, it is ok for the invariant to
become untrue during the execution of a
method, as long as it is restored by the end.

!  Of course the invariant must be true also
before any call that might cause a method
invocation on the same object.

!  In particular you have to be careful about
calling other objects that might call back

© 2009 T. S. Norvell Memorial University
Specification of objects – clear box Slide

23

E.g.

void someMutator() {
…make some changes...
invariant() ; // invariant should be true here
notifyAllObservers() ;
… do something else…
invariant() ;

}

© 2009 T. S. Norvell Memorial University
Specification of objects – clear box Slide

24

Invariants and shared objects
!  Recall that in concurrent programming we should

ensure that shared objects are never “owned” (aka
“occupied”) by more than one thread at a time.

!  The invariant of a shared object should be true
whenever no thread owns it.

!  It may be assumed at the start of synchronized
methods.

!  It should be true on return from synchronized
methods.

!  It should be true before any call to wait().
!  It may be assumed after any call to wait().
!  I.e. it is both a pre- and a postcondition of wait().

